Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 3, Pages 407–423
DOI: https://doi.org/10.17323/1609-4514-2015-15-3-407-423
(Mi mmj568)
 

This article is cited in 5 scientific papers (total in 5 papers)

Sheaves on nilpotent cones, Fourier transform, and a geometric Ringel duality

Pramod N. Achara, Carl Mautnerb

a Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
b Department of Mathematics, University of California, Riverside, 900 University Ave., Riverside, CA 92521, U.S.A.
Full-text PDF Citations (5)
References:
Abstract: Given the nilpotent cone of a complex reductive Lie algebra, we consider its equivariant constructible derived category of sheaves with coefficients in an arbitrary field. This category and its subcategory of perverse sheaves play an important role in Springer theory and the theory of character sheaves. We show that the composition of the Fourier–Sato transform on the Lie algebra followed by restriction to the nilpotent cone gives an autoequivalence of the derived category of the nilpotent cone. In the case of $\mathrm{GL}_n$, we show that this autoequivalence can be regarded as a geometric version of Ringel duality for the Schur algebra.
Key words and phrases: nilpotent cone, Fourier transform, Ringel duality, Schur algebra, Springer theory.
Funding agency Grant number
National Science Foundation DMS-1001594
The first author was supported by NSF Grant No. DMS-1001594 and the second author was supported by an NSF postdoctoral research fellowship.
Received: August 1, 2012; in revised form November 11, 2014
Bibliographic databases:
Document Type: Article
MSC: Primary 17B08, 14F05; Secondary 20G43
Language: English
Citation: Pramod N. Achar, Carl Mautner, “Sheaves on nilpotent cones, Fourier transform, and a geometric Ringel duality”, Mosc. Math. J., 15:3 (2015), 407–423
Citation in format AMSBIB
\Bibitem{AchMau15}
\by Pramod~N.~Achar, Carl~Mautner
\paper Sheaves on nilpotent cones, Fourier transform, and a~geometric Ringel duality
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 3
\pages 407--423
\mathnet{http://mi.mathnet.ru/mmj568}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-3-407-423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427432}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365392600001}
Linking options:
  • https://www.mathnet.ru/eng/mmj568
  • https://www.mathnet.ru/eng/mmj/v15/i3/p407
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024