Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 2, Pages 319–335
DOI: https://doi.org/10.17323/1609-4514-2015-15-2-319-335
(Mi mmj561)
 

This article is cited in 1 scientific paper (total in 1 paper)

Dual perfect bases and dual perfect graphs

Byeong Hoon Kahnga, Seok-Jin Kangab, Masaki Kashiwaraac, Uni Rinn Suhb

a Department of Mathematical Sciences, Seoul National University, 599 Gwanak-Ro, Seoul 151-747, Korea
b Research Institute of Mathematics, Seoul National University, 599 Gwanak-Ro, Seoul 151-747, Korea
c Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Full-text PDF Citations (1)
References:
Abstract: We introduce the notion of dual perfect bases and dual perfect graphs. We show that every integrable highest weight module $V_q(\lambda)$ over a quantum generalized Kac–Moody algebra $U_q(\mathfrak g)$ has a dual perfect basis and its dual perfect graph is isomorphic to the crystal $B(\lambda)$. We also show that the negative half $U_q^-(\mathfrak g)$ has a dual perfect basis whose dual perfect graph is isomorphic to the crystal $B(\infty)$. More generally, we prove that all the dual perfect graphs of a given dual perfect space are isomorphic as abstract crystals. Finally, we show that the isomorphism classes of finitely generated graded projective indecomposable modules over a Khovanov–Lauda–Rouquier algebra and its cyclotomic quotients form dual perfect bases for their Grothendieck groups.
Key words and phrases: perfect basis, dual perfect basis, upper global basis, lower global basis.
Received: May 9, 2014
Bibliographic databases:
Document Type: Article
MSC: 20G42
Language: English
Citation: Byeong Hoon Kahng, Seok-Jin Kang, Masaki Kashiwara, Uni Rinn Suh, “Dual perfect bases and dual perfect graphs”, Mosc. Math. J., 15:2 (2015), 319–335
Citation in format AMSBIB
\Bibitem{KahKanKas15}
\by Byeong~Hoon~Kahng, Seok-Jin~Kang, Masaki~Kashiwara, Uni~Rinn~Suh
\paper Dual perfect bases and dual perfect graphs
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 2
\pages 319--335
\mathnet{http://mi.mathnet.ru/mmj561}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-2-319-335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427426}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361607300008}
Linking options:
  • https://www.mathnet.ru/eng/mmj561
  • https://www.mathnet.ru/eng/mmj/v15/i2/p319
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:245
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024