Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 2, Pages 281–311
DOI: https://doi.org/10.17323/1609-4514-2002-2-2-281-311
(Mi mmj56)
 

This article is cited in 18 scientific papers (total in 18 papers)

Counting elliptic surfaces over finite fields

A. J. de Jong

Massachusetts Institute of Technology
Full-text PDF Citations (18)
References:
Abstract: We count the number of isomorphism classes of elliptic curves of given height $d$ over the field of rational functions in one variable over the finite field of $q$ elements. We also estimate the number of isomorphism classes of elliptic surfaces over the projective line, which have a polarization of relative degree 3. This leads to an upper bound for the average 3-Selmer rank of the aforementionned curves. Finally, we deduce a new upper bound for the average rank of elliptic curves in the large $d$ limit, namely the average rank is asymptotically bounded by $1.5+O(1/q)$.
Key words and phrases: Elliptic curves, elliptic surfaces, rank, average rank, Selmer group.
Received: December 13, 2001
Bibliographic databases:
MSC: 14G, 11G, 14H25, 1452
Language: English
Citation: A. J. de Jong, “Counting elliptic surfaces over finite fields”, Mosc. Math. J., 2:2 (2002), 281–311
Citation in format AMSBIB
\Bibitem{De 02}
\by A.~J.~de Jong
\paper Counting elliptic surfaces over finite fields
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 2
\pages 281--311
\mathnet{http://mi.mathnet.ru/mmj56}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-2-281-311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1944508}
\zmath{https://zbmath.org/?q=an:1031.11033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593400005}
Linking options:
  • https://www.mathnet.ru/eng/mmj56
  • https://www.mathnet.ru/eng/mmj/v2/i2/p281
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:386
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024