Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 2, Pages 257–267
DOI: https://doi.org/10.17323/1609-4514-2015-15-2-257-267
(Mi mmj557)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quasi-coherent Hecke category and Demazure Descent

Sergey Arkhipova, Tina Kanstrupb

a Matematisk Institut, Aarhus Universitet, Ny Munkegade, DK-8000, Århus C, Denmark
b Centre for Quantum Geometry of Moduli Spaces, Aarhus Universitet, Ny Munkegade, DK-8000, Århus C, Denmark
Full-text PDF Citations (2)
References:
Abstract: Let $G$ be a reductive algebraic group with a Borel subgroup $B$. We define the quasi-coherent Hecke category for the pair $(G,B)$. For any regular Noetherian $G$-scheme $X$ we construct a monoidal action of the Hecke category on the derived category of $B$-equivariant quasi-coherent sheaves on $X$. Using the action we define the Demazure Descent Data on the latter category and prove that the Descent category is equivalent to the derived category of $G$-equivariant sheaves on $X$.
Key words and phrases: equivariant coherent sheaves, Demazure functors, Bott–Samelson varieties.
Received: May 20, 2014
Bibliographic databases:
Document Type: Article
MSC: Primary 14M15; Secondary 20F55, 18E30
Language: English
Citation: Sergey Arkhipov, Tina Kanstrup, “Quasi-coherent Hecke category and Demazure Descent”, Mosc. Math. J., 15:2 (2015), 257–267
Citation in format AMSBIB
\Bibitem{ArkKan15}
\by Sergey~Arkhipov, Tina~Kanstrup
\paper Quasi-coherent Hecke category and Demazure Descent
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 2
\pages 257--267
\mathnet{http://mi.mathnet.ru/mmj557}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-2-257-267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427422}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361607300004}
Linking options:
  • https://www.mathnet.ru/eng/mmj557
  • https://www.mathnet.ru/eng/mmj/v15/i2/p257
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:382
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024