|
This article is cited in 2 scientific papers (total in 2 papers)
Quasi-coherent Hecke category and Demazure Descent
Sergey Arkhipova, Tina Kanstrupb a Matematisk Institut, Aarhus Universitet, Ny Munkegade, DK-8000, Århus C, Denmark
b Centre for Quantum Geometry of Moduli Spaces, Aarhus Universitet, Ny Munkegade, DK-8000, Århus C, Denmark
Abstract:
Let $G$ be a reductive algebraic group with a Borel subgroup $B$. We define the quasi-coherent Hecke category for the pair $(G,B)$. For any regular Noetherian $G$-scheme $X$ we construct a monoidal action of the Hecke category on the derived category of $B$-equivariant quasi-coherent sheaves on $X$. Using the action we define the Demazure Descent Data on the latter category and prove that the Descent category is equivalent to the derived category of $G$-equivariant sheaves on $X$.
Key words and phrases:
equivariant coherent sheaves, Demazure functors, Bott–Samelson varieties.
Received: May 20, 2014
Citation:
Sergey Arkhipov, Tina Kanstrup, “Quasi-coherent Hecke category and Demazure Descent”, Mosc. Math. J., 15:2 (2015), 257–267
Linking options:
https://www.mathnet.ru/eng/mmj557 https://www.mathnet.ru/eng/mmj/v15/i2/p257
|
Statistics & downloads: |
Abstract page: | 382 | References: | 44 |
|