Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 1, Pages 123–140
DOI: https://doi.org/10.17323/1609-4514-2015-15-1-123-140
(Mi mmj553)
 

This article is cited in 18 scientific papers (total in 18 papers)

Conformal spectrum and harmonic maps

Nikolai Nadirashvilia, Yannick Sireb

a CNRS, I2M UMR 7353, Centre de Mathématiques et Informatique, Marseille, France
b Université Aix-Marseille, I2M UMR 7353, Marseille, France
Full-text PDF Citations (18)
References:
Abstract: This paper is devoted to the study of the conformal spectrum (and more precisely the first eigenvalue) of the Laplace–Beltrami operator on a smooth connected compact Riemannian surface without boundary, endowed with a conformal class. We give a rather constructive proof of the existence of a critical metric which is smooth outside of a finite number of conical singularities and maximizes the first eigenvalue in the conformal class of the background metric. We also prove that there exists a subspace of the eigenspace associated to the first maximized eigenvalue such that the corresponding eigenvector gives a harmonic map from the surface to a Euclidean sphere.
Key words and phrases: eigenvalues, isoperimetric inequalities.
Received: April 2, 2014; in revised form July 3, 2014
Bibliographic databases:
Document Type: Article
MSC: 35P15
Language: English
Citation: Nikolai Nadirashvili, Yannick Sire, “Conformal spectrum and harmonic maps”, Mosc. Math. J., 15:1 (2015), 123–140
Citation in format AMSBIB
\Bibitem{NadSir15}
\by Nikolai~Nadirashvili, Yannick~Sire
\paper Conformal spectrum and harmonic maps
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 1
\pages 123--140
\mathnet{http://mi.mathnet.ru/mmj553}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-1-123-140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427416}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000354886200008}
Linking options:
  • https://www.mathnet.ru/eng/mmj553
  • https://www.mathnet.ru/eng/mmj/v15/i1/p123
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:334
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024