|
This article is cited in 2 scientific papers (total in 2 papers)
Eigenfunctions for $2$-dimensional tori and for rectangles with Neumann boundary conditions
Thomas Hoffmann-Ostenhof Department of Theoretical Chemistry, A 1090 Wien, Währingerstraße 17, Austria
Abstract:
Consider the eigenfunctions u for a 2D-torus, respectively, the free rectangular membrane, so that $-\Delta u=\lambda u$ on $\mathcal R(c,d)=(0,c)\times(0,d)$ with periodic, respectively, Neumann boundary conditions. In this note we show that if $u>0$ on $\partial\mathcal R(c,d)$ then $u\equiv C>0$ in $\mathcal R(c,d)$.
Key words and phrases:
eigenfunctions, 2D torus, free rectangular membrane.
Citation:
Thomas Hoffmann-Ostenhof, “Eigenfunctions for $2$-dimensional tori and for rectangles with Neumann boundary conditions”, Mosc. Math. J., 15:1 (2015), 101–106
Linking options:
https://www.mathnet.ru/eng/mmj551 https://www.mathnet.ru/eng/mmj/v15/i1/p101
|
Statistics & downloads: |
Abstract page: | 154 | References: | 37 |
|