Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 1, Pages 101–106
DOI: https://doi.org/10.17323/1609-4514-2015-15-1-101-106
(Mi mmj551)
 

This article is cited in 2 scientific papers (total in 2 papers)

Eigenfunctions for $2$-dimensional tori and for rectangles with Neumann boundary conditions

Thomas Hoffmann-Ostenhof

Department of Theoretical Chemistry, A 1090 Wien, Währingerstraße 17, Austria
Full-text PDF Citations (2)
References:
Abstract: Consider the eigenfunctions u for a 2D-torus, respectively, the free rectangular membrane, so that $-\Delta u=\lambda u$ on $\mathcal R(c,d)=(0,c)\times(0,d)$ with periodic, respectively, Neumann boundary conditions. In this note we show that if $u>0$ on $\partial\mathcal R(c,d)$ then $u\equiv C>0$ in $\mathcal R(c,d)$.
Key words and phrases: eigenfunctions, 2D torus, free rectangular membrane.
Bibliographic databases:
Document Type: Article
MSC: 35B05, 35J05
Language: English
Citation: Thomas Hoffmann-Ostenhof, “Eigenfunctions for $2$-dimensional tori and for rectangles with Neumann boundary conditions”, Mosc. Math. J., 15:1 (2015), 101–106
Citation in format AMSBIB
\Bibitem{Hof15}
\by Thomas~Hoffmann-Ostenhof
\paper Eigenfunctions for $2$-dimensional tori and for rectangles with Neumann boundary conditions
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 1
\pages 101--106
\mathnet{http://mi.mathnet.ru/mmj551}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-1-101-106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427414}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000354886200006}
Linking options:
  • https://www.mathnet.ru/eng/mmj551
  • https://www.mathnet.ru/eng/mmj/v15/i1/p101
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:158
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024