Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 1, Pages 89–100
DOI: https://doi.org/10.17323/1609-4514-2015-15-1-89-100
(Mi mmj550)
 

This article is cited in 2 scientific papers (total in 2 papers)

A proof of a conjecture by Lötter on the roots of a supersingular polynomial and its application

Takehiro Hasegawa

Faculty of Education, Shiga University, Otsu, Shiga 520-0862, Japan
Full-text PDF Citations (2)
References:
Abstract: In this paper, we prove a conjecture by E. C. Lötter on the roots of a supersingular polynomial. As its application, we present two optimal towers over finite fields corresponding to the sequences of elliptic modular curves $X_0(3\cdot2^{n+2})$ and $X_0(2\cdot3^{n+2})$.
Key words and phrases: finite fields, recursive towers of function fields, generating function of the franel number.
Received: February 13, 2014; in revised form September 16, 2014
Bibliographic databases:
Document Type: Article
MSC: 11R58, 11G20, 14G15
Language: English
Citation: Takehiro Hasegawa, “A proof of a conjecture by Lötter on the roots of a supersingular polynomial and its application”, Mosc. Math. J., 15:1 (2015), 89–100
Citation in format AMSBIB
\Bibitem{Has15}
\by Takehiro~Hasegawa
\paper A proof of a~conjecture by L\"otter on the roots of a~supersingular polynomial and its application
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 1
\pages 89--100
\mathnet{http://mi.mathnet.ru/mmj550}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-1-89-100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427413}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000354886200005}
Linking options:
  • https://www.mathnet.ru/eng/mmj550
  • https://www.mathnet.ru/eng/mmj/v15/i1/p89
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:163
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024