Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 2, Pages 249–279
DOI: https://doi.org/10.17323/1609-4514-2002-2-2-249-279
(Mi mmj55)
 

This article is cited in 38 scientific papers (total in 38 papers)

Group schemes with strict $\mathcal{O}$-action

G. Faltings

Max Planck Institute for Mathematics
Full-text PDF Citations (38)
References:
Abstract: Let $\mathcal{O}$ denote the ring of integers in a $p$-adic local field. Recall that $\mathcal{O}$-modules are formal groups with an $\mathcal{O}$-action such that the induced action on the Lie algebra is via scalars. In the paper this notion is generalised to finite flat group schemes. It is shown that the usual properties carry over. For example, Cartier duality holds with the multiplicative group replaced by the Lubin–Tate group. We also show that liftings over $\mathcal{O}$-divided powers are controlled by Dieudonné modules or, better, by complexes. For these facts new proofs have to be invented, because the classical recipe of embedding into abelian varieties is not available.
Key words and phrases: Finite flat group schemes, Lubin–Tate groups, $\mathcal{O}$-modules.
Received: February 18, 2002; in revised form May 28, 2002
Bibliographic databases:
MSC: 14L15
Language: English
Citation: G. Faltings, “Group schemes with strict $\mathcal{O}$-action”, Mosc. Math. J., 2:2 (2002), 249–279
Citation in format AMSBIB
\Bibitem{Fal02}
\by G.~Faltings
\paper Group schemes with strict $\mathcal{O}$-action
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 2
\pages 249--279
\mathnet{http://mi.mathnet.ru/mmj55}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-2-249-279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1944507}
\zmath{https://zbmath.org/?q=an:1013.11079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593400004}
\elib{https://elibrary.ru/item.asp?id=8379126}
Linking options:
  • https://www.mathnet.ru/eng/mmj55
  • https://www.mathnet.ru/eng/mmj/v2/i2/p249
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:596
    References:131
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024