Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 1, Pages 31–48
DOI: https://doi.org/10.17323/1609-4514-2015-15-1-31-48
(Mi mmj547)
 

This article is cited in 1 scientific paper (total in 1 paper)

On projections of smooth and nodal plane curves

Yu. Burmanab, Serge Lvovskic

a Indepdendent University of Moscow, 11, B. Vlassievsky per., Moscow, Russia, 119002
b National Research University Higher School of Economics, International Laboratory of Representation Theory and Mathematical Physics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
c National Research University Higher School of Economics (HSE), AG Laboratory, HSE, 7 Vavilova str., Moscow, Russia, 117312
Full-text PDF Citations (1)
References:
Abstract: Suppose that $C\subset\mathbb P^2$ is a general enough nodal plane curve of degree $>2$, $\nu\colon\hat C\to C$ is its normalization, and $\pi\colon C'\to\mathbb P^1$ is a finite morphism simply ramified over the same set of points as a projection $\mathrm{pr}_p\circ\nu\colon\hat C \to\mathbb P^1$, where $p\in\mathbb P^2\setminus C$ (if $\deg C=3$, one should assume in addition that $\deg\pi\ne4$). We prove that the morphism $\pi$ is equivalent to such a projection if and only if it extends to a finite morphism $X\to(\mathbb P^2)^*$ ramified over $C^*$, where $X$ is a smooth surface.
As a by-product, we prove the Chisini conjecture for mappings ramified over duals to general nodal curves of any degree $\ge3$ except for duals to smooth cubics; this strengthens one of Victor Kulikov's results.
Key words and phrases: plane algebraic curve, projection, monodromy, Picard–Lefschetz theory, Chisini conjecture.
Received: April 16, 2014; in revised form October 16, 2014
Bibliographic databases:
Document Type: Article
MSC: Primary 14H50; Secondary 14D05, 14N99
Language: English
Citation: Yu. Burman, Serge Lvovski, “On projections of smooth and nodal plane curves”, Mosc. Math. J., 15:1 (2015), 31–48
Citation in format AMSBIB
\Bibitem{BurLvo15}
\by Yu.~Burman, Serge~Lvovski
\paper On projections of smooth and nodal plane curves
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 1
\pages 31--48
\mathnet{http://mi.mathnet.ru/mmj547}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-1-31-48}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427410}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000354886200002}
Linking options:
  • https://www.mathnet.ru/eng/mmj547
  • https://www.mathnet.ru/eng/mmj/v15/i1/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024