Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 4, Pages 773–806
DOI: https://doi.org/10.17323/1609-4514-2014-14-4-773-806
(Mi mmj544)
 

This article is cited in 4 scientific papers (total in 4 papers)

Recursive towers of curves over finite fields using graph theory

Emmanuel Hallouin, Marc Perret

Université Toulouse 2, 5, allées Antonio Machado, 31058 Toulouse cedex, France
Full-text PDF Citations (4)
References:
Abstract: We give a new way to study recursive towers of curves over a finite field, defined á la Elkies from a bottom curve $X$ and a correspondence $\Gamma$ on $X$. A close examination of singularities leads to a necessary condition for a tower to be asymptotically good. Then, spectral theory on a directed graph, Perron–Frobenius theory and considerations on the class of $\Gamma$ in $\mathrm{NS}(X\times X)$ lead to the fact that, under some mild assumption, a recursive tower can have in some sense only a restricted asymptotic quality. Results are applied to the Bezerra–Garcia–Stichtenoth tower along the paper for illustration.
Key words and phrases: curves over a finite field, curves with many points, graphs, towers of function fields, zeta functions.
Received: December 14, 2012; in revised form March 18, 2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Emmanuel Hallouin, Marc Perret, “Recursive towers of curves over finite fields using graph theory”, Mosc. Math. J., 14:4 (2014), 773–806
Citation in format AMSBIB
\Bibitem{HalPer14}
\by Emmanuel~Hallouin, Marc~Perret
\paper Recursive towers of curves over finite fields using graph theory
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 4
\pages 773--806
\mathnet{http://mi.mathnet.ru/mmj544}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-4-773-806}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3292049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349324800006}
Linking options:
  • https://www.mathnet.ru/eng/mmj544
  • https://www.mathnet.ru/eng/mmj/v14/i4/p773
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024