Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 3, Pages 617–637
DOI: https://doi.org/10.17323/1609-4514-2014-14-3-617-637
(Mi mmj535)
 

This article is cited in 13 scientific papers (total in 13 papers)

On point-like interaction of three particles: two fermions and another particle. II

R. A. Minlos

Institute for Information Transmission Problems of Russian Academy of Sciences, Bolshoy Karetnyi 19, Moscow, Russia
Full-text PDF Citations (13)
References:
Abstract: This work continues our previous article, where the construction of Hamiltonian $H$ for the system of three quantum particles is considered. Namely the system consists of two fermions with mass 1 and another particle with mass $m>0$. In the present paper, like before, we study the part $T_{l=1}$ of auxilliary operator $T=\oplus_{l=0}^\infty T_l$ involving the construction of the resolvent for the operator $H$. In this work together with the previous one two constants $0<m_1<m_0<\infty$ were found such that: 1) for $m>m_0$ the operator $T_{l=1}$ is selfadjoint but for $m\leq m_0$ it has the deficiency indexes $(1,1)$; 2) for $m_1<m<m_0$ any selfadjoint extension of $T_{l=1}$ is semibounded from below; 3) for $0<m<m_1$ any selfadjoint extension of $T_{l=1}$ has the sequence of eigenvalues $\{\lambda_n <0,\ n> n_0\}$ with the asymptotics
$$ \lambda_n=\lambda_0e^{\delta n}+O(1),\quad n\to\infty, $$
where $\lambda_0<0$, $\delta>0$, $n_0>0$ and there is no other spectrum on the interval $\lambda<\lambda_{n_0}$.
Key words and phrases: selfadjoint extension, Mellin's transformation, formula of Sokhotsky, boundedness from below, deficincy index.
Received: February 10, 2012
Bibliographic databases:
Document Type: Article
MSC: 81Q10, 47S30
Language: English
Citation: R. A. Minlos, “On point-like interaction of three particles: two fermions and another particle. II”, Mosc. Math. J., 14:3 (2014), 617–637
Citation in format AMSBIB
\Bibitem{Min14}
\by R.~A.~Minlos
\paper On point-like interaction of three particles: two fermions and another particle.~II
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 3
\pages 617--637
\mathnet{http://mi.mathnet.ru/mmj535}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-3-617-637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3241762}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342789400008}
Linking options:
  • https://www.mathnet.ru/eng/mmj535
  • https://www.mathnet.ru/eng/mmj/v14/i3/p617
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:328
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024