Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 3, Pages 429–471
DOI: https://doi.org/10.17323/1609-4514-2014-14-3-429-471
(Mi mmj528)
 

This article is cited in 20 scientific papers (total in 20 papers)

The automorphism group of a variety with torus action of complexity one

Ivan Arzhantsevab, Jürgen Hausenc, Elaine Herppichc, Alvaro Liendod

a Department of Higher Algebra, Faculty of Mechanics and Mathematics, Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
b National Research University Higher School of Economics, School of Applied Mathematics and Information Science, Pokrovsky blvd. 11, Moscow 109028, Russia
c Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
d Instituto de Matemática y Física, Universidad de Talca, Casilla 721, Talca, Chile
Full-text PDF Citations (20)
References:
Abstract: We consider a normal complete rational variety with a torus action of complexity one. In the main results, we determine the roots of the automorphism group and give an explicit description of the root system of its semisimple part. The results are applied to the study of almost homogeneous varieties. For example, we describe all almost homogeneous (possibly singular) del Pezzo $\mathbb K^*$-surfaces of Picard number one and all almost homogeneous (possibly singular) Fano threefolds of Picard number one having a reductive automorphism group with two-dimensional maximal torus.
Key words and phrases: algebraic variety, torus action, automorphism, Cox ring, Mori Dream Space, locally nilpotent derivation, Demazure root.
Received: November 25, 2012
Bibliographic databases:
Document Type: Article
Language: English
Citation: Ivan Arzhantsev, Jürgen Hausen, Elaine Herppich, Alvaro Liendo, “The automorphism group of a variety with torus action of complexity one”, Mosc. Math. J., 14:3 (2014), 429–471
Citation in format AMSBIB
\Bibitem{ArzHauHer14}
\by Ivan~Arzhantsev, J\"urgen~Hausen, Elaine~Herppich, Alvaro~Liendo
\paper The automorphism group of a~variety with torus action of complexity one
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 3
\pages 429--471
\mathnet{http://mi.mathnet.ru/mmj528}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-3-429-471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3241755}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342789400001}
Linking options:
  • https://www.mathnet.ru/eng/mmj528
  • https://www.mathnet.ru/eng/mmj/v14/i3/p429
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:426
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024