Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 2, Pages 385–423
DOI: https://doi.org/10.17323/1609-4514-2014-14-2-385-423
(Mi mmj527)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the higher ergodic theory of certain non-discrete actions

Julio C. Rebelo

Institut de Mathématiques de Toulouse, Université de Toulouse, 118 Route de Narbonne F-31062, Toulouse, France
Full-text PDF Citations (1)
References:
Abstract: Quasi-invariant measures for non-discrete groups of diffeomorphisms containing a Morse–Smale dynamics are studied. The assumption concerning the presence of a Morse–Smale dynamics allows us to extend to higher dimensions a number of recently established results for non-discrete groups acting on the circle. The last section of this paper discusses the connection between these results and a few interesting questions about rigidity of continuous and non-continuous orbit equivalences for many groups as above.
Key words and phrases: non-discrete groups, topological rigidity, quasi-invariant measures.
Received: March 7, 2013; in revised form September 27, 2013
Bibliographic databases:
Document Type: Article
MSC: 37F35, 37A99, 22F10
Language: English
Citation: Julio C. Rebelo, “On the higher ergodic theory of certain non-discrete actions”, Mosc. Math. J., 14:2 (2014), 385–423
Citation in format AMSBIB
\Bibitem{Reb14}
\by Julio~C.~Rebelo
\paper On the higher ergodic theory of certain non-discrete actions
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 2
\pages 385--423
\mathnet{http://mi.mathnet.ru/mmj527}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-2-385-423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236499}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342789300010}
Linking options:
  • https://www.mathnet.ru/eng/mmj527
  • https://www.mathnet.ru/eng/mmj/v14/i2/p385
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:156
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024