Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 2, Pages 309–338
DOI: https://doi.org/10.17323/1609-4514-2014-14-2-309-338
(Mi mmj524)
 

This article is cited in 17 scientific papers (total in 17 papers)

Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank $k$

Jacques Hurtubisea, Caroline Lambert, Christiane Rousseaub

a Department of Mathematics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal (Qc), H3A 2K6, Canada
b Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal (Qc), H3C 3J7, Canada
Full-text PDF Citations (17)
References:
Abstract: In this, paper, we give a complete modulus for germs of generic unfoldings of nonresonant linear differential systems with an irregular singularity of Poincaré rank $k$ at the origin, under analytic equivalence. The modulus comprises a formal part depending analytically on the parameters which, for generic values of the parameters, is equivalent to the set of eigenvalues of the residue matrices of the system at the Fuchsian singular points. The analytic part of the modulus is given by unfoldings of the Stokes matrices. For that purpose, we cover a fixed neighbourhood of the origin in the variable with sectors on which we have an almost unique linear transformation to a (diagonal) formal normal form. The comparison of the corresponding fundamental matrix solutions yields the unfolding of the Stokes matrices. The construction is carried on sectoral domains in the parameter space covering the generic values of the parameters corresponding to Fuchsian singular points.
Key words and phrases: Stokes phenomenon, irregular singularity, unfolding, confluence, divergent series, monodromy, analytic classification, summability, flags.
Received: June 6, 2013; in revised form September 26, 2013
Bibliographic databases:
Document Type: Article
MSC: Primary 34M35, 34M40, 34M03; Secondary 37G10, 34E10, 37G05
Language: English
Citation: Jacques Hurtubise, Caroline Lambert, Christiane Rousseau, “Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank $k$”, Mosc. Math. J., 14:2 (2014), 309–338
Citation in format AMSBIB
\Bibitem{HurLamRou14}
\by Jacques~Hurtubise, Caroline~Lambert, Christiane~Rousseau
\paper Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincar\'e rank~$k$
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 2
\pages 309--338
\mathnet{http://mi.mathnet.ru/mmj524}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-2-309-338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236496}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342789300007}
Linking options:
  • https://www.mathnet.ru/eng/mmj524
  • https://www.mathnet.ru/eng/mmj/v14/i2/p309
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:333
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024