Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 2, Pages 239–289
DOI: https://doi.org/10.17323/1609-4514-2014-14-2-239-289
(Mi mmj522)
 

This article is cited in 13 scientific papers (total in 13 papers)

On quadrilateral orbits in complex algebraic planar billiards

Alexey Glutsyukabc

a CNRS, Unité de Mathématiques Pures et Appliquées, M.R., École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon 07, France
b Laboratoire J.-V. Poncelet (UMI 2615 du CNRS and the Independent University of Moscow)
c National Research University Higher School of Economics, Russia
Full-text PDF Citations (13)
References:
Abstract: The famous conjecture of V. Ya. Ivrii (1978) says that in every billiard with infinitely-smooth boundary in a Euclidean space the set of periodic orbits has measure zero. In the present paper we study the complex algebraic version of Ivrii's conjecture for quadrilateral orbits in two dimensions, with reflections from complex algebraic curves. We present the complete classification of $4$-reflective algebraic counterexamples: billiards formed by four complex algebraic curves in the projective plane that have open set of quadrilateral orbits. As a corollary, we provide classification of the so-called real algebraic pseudo-billiards with open set of quadrilateral orbits: billiards formed by four real algebraic curves; the reflections allow to change the side with respect to the reflecting tangent line.
Key words and phrases: billiard, periodic orbit, complex algebraic curve, complex reflection law, complex Euclidean metric, isotropic line, complex confocal conics, birational transformation.
Received: August 7, 2013; in revised form December 28, 2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexey Glutsyuk, “On quadrilateral orbits in complex algebraic planar billiards”, Mosc. Math. J., 14:2 (2014), 239–289
Citation in format AMSBIB
\Bibitem{Glu14}
\by Alexey~Glutsyuk
\paper On quadrilateral orbits in complex algebraic planar billiards
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 2
\pages 239--289
\mathnet{http://mi.mathnet.ru/mmj522}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-2-239-289}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236494}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342789300005}
Linking options:
  • https://www.mathnet.ru/eng/mmj522
  • https://www.mathnet.ru/eng/mmj/v14/i2/p239
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:232
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024