Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 2, Pages 181–203
DOI: https://doi.org/10.17323/1609-4514-2014-14-2-181-203
(Mi mmj519)
 

This article is cited in 11 scientific papers (total in 11 papers)

Generic fast diffusion for a class of non-convex Hamiltonians with two degrees of freedom

Abed Bounemouraa, Vadim Kaloshinb

a Université Paris Dauphine, CEREMADE, Place du Marchal de Lattre de Tassigny
b Department of Mathematics, University of Maryland, College Park, MD, 20817
Full-text PDF Citations (11)
References:
Abstract: In this paper, we study small perturbations of a class of non-convex integrable Hamiltonians with two degrees of freedom, and we prove a result of diffusion for an open and dense set of perturbations, with an optimal time of diffusion which grows linearly with respect to the inverse of the size of the perturbation.
Key words and phrases: Arnold diffusion, linear diffusion, superconductivity channels, Nekhoroshev theory, convexity, resonant normal forms.
Received: June 27, 2013; in revised form November 8, 2013
Bibliographic databases:
Document Type: Article
MSC: 37J40
Language: English
Citation: Abed Bounemoura, Vadim Kaloshin, “Generic fast diffusion for a class of non-convex Hamiltonians with two degrees of freedom”, Mosc. Math. J., 14:2 (2014), 181–203
Citation in format AMSBIB
\Bibitem{BouKal14}
\by Abed~Bounemoura, Vadim~Kaloshin
\paper Generic fast diffusion for a~class of non-convex Hamiltonians with two degrees of freedom
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 2
\pages 181--203
\mathnet{http://mi.mathnet.ru/mmj519}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-2-181-203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236491}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342789300002}
Linking options:
  • https://www.mathnet.ru/eng/mmj519
  • https://www.mathnet.ru/eng/mmj/v14/i2/p181
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:273
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024