Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2014, Volume 14, Number 1, Pages 39–61
DOI: https://doi.org/10.17323/1609-4514-2014-14-1-39-61
(Mi mmj514)
 

This article is cited in 39 scientific papers (total in 39 papers)

Five dimensional gauge theories and vertex operators

Erik Carlssona, Nikita Nekrasovbcda, Andrei Okounkovde

a Simons Center for Geometry and Physics, Stony Brook NY 11794-3636 USA
b Alikhanov Institute of Theoretical and Experimental Physics, Moscow 117218 Russia
c Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette 91440 France
d Kharkevich Institute for Information Transmission Problems, Lab. 5, Moscow 127994 Russia
e Department of Mathematics, Columbia University, New York USA
Full-text PDF Citations (39)
References:
Abstract: We study supersymmetric gauge theories in five dimensions, using their relation to the $K$-theory of the moduli spaces of torsion free sheaves. In the spirit of the BPS/CFT correspondence the partition function and the expectation values of the chiral, BPS protected observables are given by the matrix elements and more generally by the correlation functions in some $q$-deformed conformal field theory in two dimensions. We show that the coupling of the gauge theory to the bi-fundamental matter hypermultiplet inserts a particular vertex operator in this theory. In this way we get a generalization of the main result of a paper by E.C. and A.O. to $K$-theory. The theory of interpolating Macdonald polynomials is an important tool in our construction.
Key words and phrases: gauge theory, representation theory, symmetric group, $K$-theory, Hilbert scheme, BPS/CFT correspondence.
Received: October 18, 2012; in revised form July 6, 2013
Bibliographic databases:
Document Type: Article
MSC: 33D52, 14D21
Language: English
Citation: Erik Carlsson, Nikita Nekrasov, Andrei Okounkov, “Five dimensional gauge theories and vertex operators”, Mosc. Math. J., 14:1 (2014), 39–61
Citation in format AMSBIB
\Bibitem{CarNekOko14}
\by Erik~Carlsson, Nikita~Nekrasov, Andrei~Okounkov
\paper Five dimensional gauge theories and vertex operators
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 1
\pages 39--61
\mathnet{http://mi.mathnet.ru/mmj514}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-1-39-61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3221946}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342789200003}
Linking options:
  • https://www.mathnet.ru/eng/mmj514
  • https://www.mathnet.ru/eng/mmj/v14/i1/p39
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:503
    Full-text PDF :1
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024