Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2013, Volume 13, Number 4, Pages 631–647
DOI: https://doi.org/10.17323/1609-4514-2013-13-4-631-647
(Mi mmj508)
 

This article is cited in 1 scientific paper (total in 1 paper)

Real dihedral $p$-gonal Riemann surfaces

Ismael Cortázar, Antonio F. Costa

Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, 28040 Madrid Spain
Full-text PDF Citations (1)
References:
Abstract: Riemann surfaces (and algebraic curves) have been comprehensively studied when they are regular (Galois) coverings of the Riemann sphere, but barely addressed in the general case of being non-regular coverings. In this article we deal with this less known case for a special type of non-regular $p$-coverings ($p$ prime greater than 2), those with monodromy group isomorphic to the dihedral group $D_p$, which we call dihedral $p$-gonal coverings (the particular case $p=3$ has been already studied by A. F. Costa and M. Izquierdo). We have focused on real algebraic curves (those that have a special anticonformal involution) and we study real dihedral $p$-gonal Riemann surfaces. We found out the restrictions, besides Harnack's theorem and generalizations, that apply to the possible topological types of real dihedral $p$-gonal Riemann surfaces.
Key words and phrases: real Riemann surface, real algebraic curve, automorphism, anticonformal automorphism, $p$-gonal morphism, Klein surface.
Received: May 4, 2012; in revised form October 30, 2012
Bibliographic databases:
Document Type: Article
MSC: 30F10, 14H37
Language: English
Citation: Ismael Cortázar, Antonio F. Costa, “Real dihedral $p$-gonal Riemann surfaces”, Mosc. Math. J., 13:4 (2013), 631–647
Citation in format AMSBIB
\Bibitem{CorCos13}
\by Ismael~Cort\'azar, Antonio~F.~Costa
\paper Real dihedral $p$-gonal Riemann surfaces
\jour Mosc. Math.~J.
\yr 2013
\vol 13
\issue 4
\pages 631--647
\mathnet{http://mi.mathnet.ru/mmj508}
\crossref{https://doi.org/10.17323/1609-4514-2013-13-4-631-647}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330037700005}
Linking options:
  • https://www.mathnet.ru/eng/mmj508
  • https://www.mathnet.ru/eng/mmj/v13/i4/p631
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025