Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2013, Volume 13, Number 4, Pages 601–619
DOI: https://doi.org/10.17323/1609-4514-2013-13-4-601-619
(Mi mmj506)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the cohomological dimension of some pro-$p$-extensions above the cyclotomic $\mathbb Z_p$-extension of a number field

Julien Blondeau, Philippe Lebacque, Christian Maire

Laboratoire de Mathématiques, UFR Sciences et Techniques, 16 route de Gray, 25030 Besançon
Full-text PDF Citations (5)
References:
Abstract: Let $\widetilde K_S^T$ be the maximal pro-$p$-extension of the cyclotomic $\mathbb Z_p$-extension $K^\mathrm{cyc}$ of a number field $K$, unramified outside the places above $S$ and totally split at the places above $T$. Let $\widetilde G_S^T=\mathrm{Gal}(\widetilde K_S^T/K)$.
In this work we adapt the methods developed by Schmidt in order to show that the group $\widetilde G_S^T=\mathrm{Gal}(\widetilde K_S^T/K)$ is of cohomological dimension 2 provided the finite set $S$ is well chosen. This group $\widetilde G_S^T$ is in fact mild in the sense of Labute. We compute its Euler characteristic, by studying the Galois cohomology groups $H^i(\widetilde G_S^T,\mathbb F_p)$, $i=1,2$. Finally, we provide new situations where the group $\widetilde G_S^T$ is a free pro-$p$-group.
Key words and phrases: mild pro-$p$-groups, Galois cohomology, restricted ramification, cyclotomic $\mathbb Z_p$ extension.
Received: October 3, 2013
Bibliographic databases:
Document Type: Article
MSC: 11R34, 11R37
Language: English
Citation: Julien Blondeau, Philippe Lebacque, Christian Maire, “On the cohomological dimension of some pro-$p$-extensions above the cyclotomic $\mathbb Z_p$-extension of a number field”, Mosc. Math. J., 13:4 (2013), 601–619
Citation in format AMSBIB
\Bibitem{BloLebMai13}
\by Julien~Blondeau, Philippe~Lebacque, Christian~Maire
\paper On the cohomological dimension of some pro-$p$-extensions above the cyclotomic $\mathbb Z_p$-extension of a number field
\jour Mosc. Math.~J.
\yr 2013
\vol 13
\issue 4
\pages 601--619
\mathnet{http://mi.mathnet.ru/mmj506}
\crossref{https://doi.org/10.17323/1609-4514-2013-13-4-601-619}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330037700003}
Linking options:
  • https://www.mathnet.ru/eng/mmj506
  • https://www.mathnet.ru/eng/mmj/v13/i4/p601
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025