Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2013, Volume 13, Number 3, Pages 365–398
DOI: https://doi.org/10.17323/1609-4514-2013-13-3-365-398
(Mi mmj501)
 

This article is cited in 4 scientific papers (total in 4 papers)

Quasi-ordinary singularities and Newton trees

E. Artal Bartoloa, Pi. Cassou-Noguèsb, I. Luengoc, A. Melle Hernándezd

a Departamento de Matemáticas-IUMA, Universidad de Zaragoza, c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
b Institut de Mathématiques de Bordeaux, Université Bordeaux I, 350, Cours de la Libération, 33405, Talence Cedex 05, France
c Dept. of Algebra, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040, Madrid, Spain
d ICMAT (CSIC-UAM-UC3M-UCM), Dept. of Algebra, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040, Madrid, Spain
Full-text PDF Citations (4)
References:
Abstract: In this paper we study some properties of the class of $\nu$-quasi-ordinary hypersurface singularities. They are defined by a very mild conditions on their (projected) Newton polygon. We associate with them a Newton tree and characterize quasi-ordinary hypersurface singularities among $\nu$-quasi-ordinary hypersurface singularities in terms of their Newton tree. A formula to compute the discriminant of a quasi-ordinary Weierstrass polynomial in terms of the decorations of its Newton tree is given. This allows to compute the discriminant avoiding the use of determinants and even for non Weierstrass prepared polynomials. This is important for applications like algorithmic resolutions. We compare the Newton tree of a quasi-ordinary singularity and those of its curve transversal sections. We show that the Newton trees of the transversal sections do not give the tree of the quasi-ordinary singularity in general. It does if we know that the Newton tree of the quasi-ordinary singularity has only one arrow.
Key words and phrases: quasi-ordinary singularities, resultant, factorization.
Received: July 29, 2010; in revised form February 15, 2012
Bibliographic databases:
Document Type: Article
MSC: 14B05, 32S05, 32S10
Language: English
Citation: E. Artal Bartolo, Pi. Cassou-Noguès, I. Luengo, A. Melle Hernández, “Quasi-ordinary singularities and Newton trees”, Mosc. Math. J., 13:3 (2013), 365–398
Citation in format AMSBIB
\Bibitem{ArtCasLue13}
\by E.~Artal Bartolo, Pi.~Cassou-Nogu\`es, I.~Luengo, A.~Melle Hern\'andez
\paper Quasi-ordinary singularities and Newton trees
\jour Mosc. Math.~J.
\yr 2013
\vol 13
\issue 3
\pages 365--398
\mathnet{http://mi.mathnet.ru/mmj501}
\crossref{https://doi.org/10.17323/1609-4514-2013-13-3-365-398}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3136099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324492100001}
Linking options:
  • https://www.mathnet.ru/eng/mmj501
  • https://www.mathnet.ru/eng/mmj/v13/i3/p365
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:136
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024