Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 1, Pages 161–182
DOI: https://doi.org/10.17323/1609-4514-2002-2-1-161-182
(Mi mmj50)
 

This article is cited in 23 scientific papers (total in 23 papers)

The Bott formula for toric varieties

E. N. Materov

Eberhard Karls Universität Tübingen
Full-text PDF Citations (23)
References:
Abstract: The purpose of this paper is to give an explicit formula which allows one to compute the dimension of the cohomology groups of the sheaf $\Omega_{\mathbb P}^p(D)= \Omega_{\mathbb P}^p\otimes {\mathcal O_\mathbb P}(D)$ of $p$-th differential forms Zariski twisted by an ample invertible sheaf on a complete simplicial toric variety. The formula involves some combinatorial sums of integer points over all faces of the support polytope for ${\mathcal O_\mathbb P}(D)$. Comparison of two versions of the Bott formula gives some elegant corollaries in the combinatorics of simple polytopes. Also, we obtain a generalization of the reciprocity law. Some applications of the Bott formula are discussed.
Key words and phrases: $p$-th Hilbert–Ehrhart polynomial, Zariski forms.
Received: July 7, 2001; in revised form November 25, 2001
Bibliographic databases:
MSC: Primary 14M25; Secondary 52B20, 52B11, 32L10, 58A10
Language: English
Citation: E. N. Materov, “The Bott formula for toric varieties”, Mosc. Math. J., 2:1 (2002), 161–182
Citation in format AMSBIB
\Bibitem{Mat02}
\by E.~N.~Materov
\paper The Bott formula for toric varieties
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 1
\pages 161--182
\mathnet{http://mi.mathnet.ru/mmj50}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-1-161-182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900589}
\zmath{https://zbmath.org/?q=an:1080.14540}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587700009}
\elib{https://elibrary.ru/item.asp?id=8379100}
Linking options:
  • https://www.mathnet.ru/eng/mmj50
  • https://www.mathnet.ru/eng/mmj/v2/i1/p161
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :2
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024