Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 1, Pages 127–160
DOI: https://doi.org/10.17323/1609-4514-2002-2-1-127-160
(Mi mmj49)
 

This article is cited in 8 scientific papers (total in 8 papers)

Orbits of braid groups on cacti

G. A. Jonesa, A. K. Zvonkinb

a University of Southampton
b Universite Bordeaux 1, Laboratoire Bordelais de Recherche en Informatique
Full-text PDF Citations (8)
References:
Abstract: One of the consequences of the classification of finite simple groups is the fact that non-rigid polynomials (those with more than two finite critical values), considered as branched coverings of the sphere, have exactly three exceptional monodromy groups (one in degree 7, one in degree 13 and one in degree 15). By exceptional here we mean primitive and not equal to $S_n$ or $A_n$, where $n$ is the degree. Motivated by the problem of the topological classification of polynomials, a problem that goes back to 19th century researchers, we discuss several techniques for investigating orbits of braid groups on “cacti” (ordered sets of monodromy permutations). Applying these techniques, we provide a complete topological classification for the three exceptional cases mentioned above.
Key words and phrases: Topological classification of polynomials, monodromy groups, Braid group actions.
Received: April 10, 2001
Bibliographic databases:
MSC: Primary 30C10; Secondary 57M12, 05B25, 57M60, 20B15
Language: English
Citation: G. A. Jones, A. K. Zvonkin, “Orbits of braid groups on cacti”, Mosc. Math. J., 2:1 (2002), 127–160
Citation in format AMSBIB
\Bibitem{JonZvo02}
\by G.~A.~Jones, A.~K.~Zvonkin
\paper Orbits of braid groups on cacti
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 1
\pages 127--160
\mathnet{http://mi.mathnet.ru/mmj49}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-1-127-160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900588}
\zmath{https://zbmath.org/?q=an:1008.20030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587700008}
\elib{https://elibrary.ru/item.asp?id=8379099}
Linking options:
  • https://www.mathnet.ru/eng/mmj49
  • https://www.mathnet.ru/eng/mmj/v2/i1/p127
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :1
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024