Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2013, Volume 13, Number 1, Pages 1–18 (Mi mmj486)  

This article is cited in 11 scientific papers (total in 11 papers)

Post-Lie algebra structures and generalized derivations of semisimple Lie algebras

Dietrich Burdea, Karel Dekimpeb

a Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, 1090 Wien, Austria
b Katholieke Universiteit Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
Full-text PDF Citations (11)
References:
Abstract: We study post-Lie algebra structures on pairs of Lie algebras $(\mathfrak{g},\mathfrak{n})$, and prove existence results for the case that one of the Lie algebras is semisimple. For semisimple $\mathfrak{g}$ and solvable $\mathfrak{n}$ we show that there exist no post-Lie algebra structures on $(\mathfrak{g},\mathfrak{n})$. For semisimple $\mathfrak{n}$ and certain solvable $\mathfrak{g}$ we construct natural post-Lie algebra structures. On the other hand we prove that there are no post-Lie algebra structures for semisimple $\mathfrak{n}$ and solvable, unimodular $\mathfrak{g}$. We also determine the generalized $(\alpha,\beta,\gamma)$-derivations of $\mathfrak{n}$ in the semisimple case. As an application we classify certain post-Lie algebra structures related to generalized derivations.
Key words and phrases: Post-Lie algebra, Pre-Lie algebra, $\mathrm{LR}$-algebra, generalized derivation.
Received: September 2, 2011; in revised form September 11, 2012
Bibliographic databases:
Document Type: Article
MSC: 17B30, 17D25
Language: English
Citation: Dietrich Burde, Karel Dekimpe, “Post-Lie algebra structures and generalized derivations of semisimple Lie algebras”, Mosc. Math. J., 13:1 (2013), 1–18
Citation in format AMSBIB
\Bibitem{BurDek13}
\by Dietrich~Burde, Karel~Dekimpe
\paper Post-Lie algebra structures and generalized derivations of semisimple Lie algebras
\jour Mosc. Math.~J.
\yr 2013
\vol 13
\issue 1
\pages 1--18
\mathnet{http://mi.mathnet.ru/mmj486}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112213}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315331400001}
Linking options:
  • https://www.mathnet.ru/eng/mmj486
  • https://www.mathnet.ru/eng/mmj/v13/i1/p1
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024