Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2012, Volume 12, Number 4, Pages 825–862
DOI: https://doi.org/10.17323/1609-4514-2012-12-4-825-862
(Mi mmj484)
 

This article is cited in 7 scientific papers (total in 7 papers)

Thom's problem for degenerated singular points of holomorphic foliations in the plane

L. Ortiz-Bobadillaa, E. Rosales-Gonzáleza, S. M. Voroninb

a Instituto de Matemáticas, Universidad Nacional Autonoma de México
b Departament of Mathematics, Chelyabinsk State University
Full-text PDF Citations (7)
References:
Abstract: Let $\mathcal{V}_n$ be the class of germs of holomorphic non-dicritic vector fields in $(\mathbb{C}^2,0)$ with vanishing $(n-1)$-jet at the origin, $n\geq2$, and non-vanishing $n$-jet. In the present work the formal normal form (under the strict orbital classification) of generic germs in a subclass $\mathcal{V}_n^o$ of $\mathcal{V}_n$ is given. Any such normal form is given as the sum of three terms: a “principal” generic homogeneous term, $\mathbf{v}_o\in\mathcal{V}_n$, a “hamiltonian” term, $\mathbf{v}_c $ (given by a hamiltonian polynomial vector field) and a “radial” term.
For any generic germ $\mathbf{v}\in\mathcal{V}_n^o$ we define the triplet $i_\mathbf{v}= (\mathbf{v}_o, \mathbf{v}_c,[G_{\mathbf{v}}])$, where $\mathbf{v}_o$ and $\mathbf{v}_c$ denote the principal and hamiltonian terms of its corresponding formal normal form, and $[G_{\mathbf{v}}]$ denotes the class of strict analytic conjugacy of its projective (hidden or vanishing) monodromy group. We prove that the terms appearing in $i_{\mathbf{v}}$ are Thom's invariants of the strict analytical orbital classification of generic germs in $\mathcal{V}_n^o$: two generic germs $\mathbf{v}$ and $\tilde{\mathbf{v}}$ in $\mathcal{V}_n^o$ are strictly orbitally analytically equivalent if and only if $i_{\mathbf{v}}= i_{\tilde{\mathbf{v}}}$. Moreover, any triplet satisfying some natural conditions of concordance can be realized as invariant of a generic germ of $\mathcal{V}_n^o$.
Key words and phrases: Non-dicritic foliations, non-dicritic vector fields, formal normal forms, analytic invariants, monodromy group.
Received: December 17, 2010
Bibliographic databases:
Document Type: Article
MSC: Primary 32S65, 37F75; Secondary 32S70, 32S05, 32S30, 34A25, 34C20, 57R30
Language: English
Citation: L. Ortiz-Bobadilla, E. Rosales-González, S. M. Voronin, “Thom's problem for degenerated singular points of holomorphic foliations in the plane”, Mosc. Math. J., 12:4 (2012), 825–862
Citation in format AMSBIB
\Bibitem{OrtRosVor12}
\by L.~Ortiz-Bobadilla, E.~Rosales-Gonz\'alez, S.~M.~Voronin
\paper Thom's problem for degenerated singular points of holomorphic foliations in the plane
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 4
\pages 825--862
\mathnet{http://mi.mathnet.ru/mmj484}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-4-825-862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076858}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314341500010}
Linking options:
  • https://www.mathnet.ru/eng/mmj484
  • https://www.mathnet.ru/eng/mmj/v12/i4/p825
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024