|
This article is cited in 5 scientific papers (total in 5 papers)
The dual horospherical Radon transform for polynomials
J. Hilgerta, A. Pasqualea, È. B. Vinbergb a Institut für Mathematik, Technische Universität Clausthal
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Let $X=G/K$ be a semisimple symmetric space of non-compact type. A horosphere in $X$ is an orbit of a maximal unipotent subgroup of $G$. The set $\operatorname{Hor}X$ of all horospheres is a homogeneous space of $G$. The horospherical Radom transform suggested by I. M. Gelfand and M. I. Graev in 1959 takes any function $\varphi$ on $X$ to a function on $\operatorname{Hor}X$ obtained by integrating $\varphi$ over horospheres. We explicitly describe the dual transform in terms of its action on polynomial functions on $\operatorname{Hor}X$.
Key words and phrases:
Symmetric space, horosphere, Radon transform, Harish–Chandra $\mathbf c$-function.
Received: August 24, 2001; in revised form November 14, 2001
Citation:
J. Hilgert, A. Pasquale, È. B. Vinberg, “The dual horospherical Radon transform for polynomials”, Mosc. Math. J., 2:1 (2002), 113–126
Linking options:
https://www.mathnet.ru/eng/mmj48 https://www.mathnet.ru/eng/mmj/v2/i1/p113
|
Statistics & downloads: |
Abstract page: | 322 | References: | 70 |
|