Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 1, Pages 113–126
DOI: https://doi.org/10.17323/1609-4514-2002-2-1-113-126
(Mi mmj48)
 

This article is cited in 5 scientific papers (total in 5 papers)

The dual horospherical Radon transform for polynomials

J. Hilgerta, A. Pasqualea, È. B. Vinbergb

a Institut für Mathematik, Technische Universität Clausthal
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF Citations (5)
References:
Abstract: Let $X=G/K$ be a semisimple symmetric space of non-compact type. A horosphere in $X$ is an orbit of a maximal unipotent subgroup of $G$. The set $\operatorname{Hor}X$ of all horospheres is a homogeneous space of $G$. The horospherical Radom transform suggested by I. M. Gelfand and M. I. Graev in 1959 takes any function $\varphi$ on $X$ to a function on $\operatorname{Hor}X$ obtained by integrating $\varphi$ over horospheres. We explicitly describe the dual transform in terms of its action on polynomial functions on $\operatorname{Hor}X$.
Key words and phrases: Symmetric space, horosphere, Radon transform, Harish–Chandra $\mathbf c$-function.
Received: August 24, 2001; in revised form November 14, 2001
Bibliographic databases:
Language: English
Citation: J. Hilgert, A. Pasquale, È. B. Vinberg, “The dual horospherical Radon transform for polynomials”, Mosc. Math. J., 2:1 (2002), 113–126
Citation in format AMSBIB
\Bibitem{HilPasVin02}
\by J.~Hilgert, A.~Pasquale, \`E.~B.~Vinberg
\paper The dual horospherical Radon transform for polynomials
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 1
\pages 113--126
\mathnet{http://mi.mathnet.ru/mmj48}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-1-113-126}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900587}
\zmath{https://zbmath.org/?q=an:1003.43008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587700007}
\elib{https://elibrary.ru/item.asp?id=8379098}
Linking options:
  • https://www.mathnet.ru/eng/mmj48
  • https://www.mathnet.ru/eng/mmj/v2/i1/p113
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:322
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024