|
This article is cited in 8 scientific papers (total in 8 papers)
Random Young Diagrams in a Rectangular Box
Dan Beltofta, Cédric Boutillierbc, Nathanaël Enriquezd a Aarhus University, Department of Math. Sciences, Ny Munkegade 118, 8000, Aarhus C, Denmark
b Université Pierre et Marie Curie, Laboratoire LPMA, 4 place Jussieu 75005, Paris, France
c École Normale Supérieure, DMA, 45 rue d’Ulm 75005 Paris, France
d Université Paris-Ouest, Laboratoire MODAL’X, 200 Av. de la République 92001, Nanterre, France
Abstract:
We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area (grand-canonical ensemble), and confined in a rectangular box. The Ornstein–Uhlenbeck bridge arises from the fluctuations around the limit shape. The fluctuations for the unconfined case lead to a two-sided stationary Ornstein–Uhlenbeck process.
Key words and phrases:
Young diagrams, Gauss polynomials, Ornstein–Uhlenbeck process.
Received: October 26, 2010; in revised form December 15, 2011
Citation:
Dan Beltoft, Cédric Boutillier, Nathanaël Enriquez, “Random Young Diagrams in a Rectangular Box”, Mosc. Math. J., 12:4 (2012), 719–745
Linking options:
https://www.mathnet.ru/eng/mmj478 https://www.mathnet.ru/eng/mmj/v12/i4/p719
|
Statistics & downloads: |
Abstract page: | 191 | References: | 58 | First page: | 3 |
|