Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2012, Volume 12, Number 4, Pages 705–717
DOI: https://doi.org/10.17323/1609-4514-2012-12-4-705-717
(Mi mmj477)
 

This article is cited in 1 scientific paper (total in 1 paper)

On products of skew rotations

M. D. Arnoldab, E. I. Dinaburgac, G. B. Dobrushinaa, S. A. Pirogova, A. N. Rybkoa

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny per. 19, Moscow, 127994, Russia
b International Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences, Profsoyuznaya str., 84/32, Moscow, 117997, Russia
c Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, B. Gruzinskaya str., 10, Moscow, 123995, Russia
Full-text PDF Citations (1)
References:
Abstract: Let $\{S_1^t\},\ldots,\{S_n^t\}$ be the one-parametric groups of shifts along the orbits of Hamiltonian systems generated by time-independent Hamiltonians $H_1,\ldots, H_n$ with one degree of freedom. In some problems of population genetics there appear planar transformations having the form $S^{h_n}_n\cdots S_1^{h_1}$ under some conditions on Hamiltonians $H_1,\ldots,H_n$. In this paper we study asymptotical properties of trajectories of such transformations. We show that under classical non-degeneracy condition on the Hamiltonians the trajectories stay in the invariant annuli for generic combinations of lengths $h_1,\dots, h_n$, while for the special case $h_1+\dots+h_n=0$ there exists a trajectory escaping to infinity.
Key words and phrases: KAM theory, Hamiltonian systems.
Received: July 13, 2011
Bibliographic databases:
Document Type: Article
MSC: 37J40, 37J15, 37M05
Language: English
Citation: M. D. Arnold, E. I. Dinaburg, G. B. Dobrushina, S. A. Pirogov, A. N. Rybko, “On products of skew rotations”, Mosc. Math. J., 12:4 (2012), 705–717
Citation in format AMSBIB
\Bibitem{ArnDinDob12}
\by M.~D.~Arnold, E.~I.~Dinaburg, G.~B.~Dobrushina, S.~A.~Pirogov, A.~N.~Rybko
\paper On products of skew rotations
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 4
\pages 705--717
\mathnet{http://mi.mathnet.ru/mmj477}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-4-705-717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076851}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314341500003}
Linking options:
  • https://www.mathnet.ru/eng/mmj477
  • https://www.mathnet.ru/eng/mmj/v12/i4/p705
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :1
    References:74
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024