Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 1, Pages 99–112
DOI: https://doi.org/10.17323/1609-4514-2002-2-1-99-112
(Mi mmj47)
 

This article is cited in 18 scientific papers (total in 18 papers)

Toric geometry and Grothendieck residues

O. A. Gelfonda, A. G. Khovanskiibcd

a Scientific Research Institute for System Studies of RAS
b University of Toronto
c Independent University of Moscow
d Institute of Systems Analysis, Russian Academy of Sciences
Full-text PDF Citations (18)
References:
Abstract: We consider a system of $n$ algebraic equations $P_1=\dots=P_n=0$ in the torus $(\mathbb C\setminus 0)^n$. It is assumed that the Newton polyhedra of the equations are in a sufficiently general position with respect to one another. Let $\omega$ be any rational $n$-form which is regular on $(\mathbb C\setminus0)^n$ outside the hypersurface $P_1\dotsb P_n=0$. Formerly we have announced an explicit formula for the sum of the Grothendieck residues of the form $\omega$ at all roots of the system of equations. In the present paper this formula is proved.
Key words and phrases: Grothendieck residues, Newton polyhedra, toric varieties.
Received: September 19, 2001
Bibliographic databases:
MSC: 14M25
Language: English
Citation: O. A. Gelfond, A. G. Khovanskii, “Toric geometry and Grothendieck residues”, Mosc. Math. J., 2:1 (2002), 99–112
Citation in format AMSBIB
\Bibitem{GelKho02}
\by O.~A.~Gelfond, A.~G.~Khovanskii
\paper Toric geometry and Grothendieck residues
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 1
\pages 99--112
\mathnet{http://mi.mathnet.ru/mmj47}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-1-99-112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900586}
\zmath{https://zbmath.org/?q=an:1044.14029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587700006}
\elib{https://elibrary.ru/item.asp?id=8379097}
Linking options:
  • https://www.mathnet.ru/eng/mmj47
  • https://www.mathnet.ru/eng/mmj/v2/i1/p99
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:537
    Full-text PDF :1
    References:106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024