Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2012, Volume 12, Number 2, Pages 293–312
DOI: https://doi.org/10.17323/1609-4514-2012-12-2-293-312
(Mi mmj468)
 

This article is cited in 11 scientific papers (total in 11 papers)

Cluster structures on simple complex Lie groups and Belavin–Drinfeld classification

M. Gekhtmana, M. Shapirob, A. Vainshteinc

a Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556
b Department of Mathematics, Michigan State University, East Lansing, MI 48823
c Department of Mathematics & Department of Computer Science, University of Haifa, Haifa, Mount Carmel 31905, Israel
Full-text PDF Citations (11)
References:
Abstract: We study natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson–Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin–Drinfeld classification of Poisson-Lie structures on $\mathcal{G}$ corresponds to a cluster structure in $\mathcal{O}(\mathcal{G})$. We prove a reduction theorem explaining how different parts of the conjecture are related to each other. The conjecture is established for $SL_n$, $n<5$, and for any $\mathcal{G}$ in the case of the standard Poisson–Lie structure.
Key words and phrases: Poisso–Lie group, cluster algebra, Belavin–Drinfeld triple.
Received: December 29, 2010
Bibliographic databases:
Document Type: Article
MSC: 53D17, 13F60
Language: English
Citation: M. Gekhtman, M. Shapiro, A. Vainshtein, “Cluster structures on simple complex Lie groups and Belavin–Drinfeld classification”, Mosc. Math. J., 12:2 (2012), 293–312
Citation in format AMSBIB
\Bibitem{GekShaVai12}
\by M.~Gekhtman, M.~Shapiro, A.~Vainshtein
\paper Cluster structures on simple complex Lie groups and Belavin--Drinfeld classification
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 2
\pages 293--312
\mathnet{http://mi.mathnet.ru/mmj468}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-2-293-312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978758}
\zmath{https://zbmath.org/?q=an:1259.53075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309365900006}
Linking options:
  • https://www.mathnet.ru/eng/mmj468
  • https://www.mathnet.ru/eng/mmj/v12/i2/p293
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:255
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024