Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2012, Volume 12, Number 2, Pages 219–236
DOI: https://doi.org/10.17323/1609-4514-2012-12-2-219-236
(Mi mmj463)
 

Rational tangles and the modular group

Francesca Aicardi

ICTP, Strada Costiera, 11, I – 34151 Trieste Italy
References:
Abstract: There is a natural way to define an isomorphism between the group of transformations of isotopy classes of rational tangles and the modular group. This isomorphism allows to give a simple proof of the Conway theorem, stating the one-to-one correspondence between isotopy classes of rational tangles and rational numbers. Two other simple ways to define this isomorphisms, one of which suggested by Arnold, are also shown.
Key words and phrases: tangles, rational tangles, modular group, continued fractions, braids group, spherical braids group.
Received: June 6, 2011
Bibliographic databases:
Document Type: Article
MSC: 57M27, 20F36
Language: English
Citation: Francesca Aicardi, “Rational tangles and the modular group”, Mosc. Math. J., 12:2 (2012), 219–236
Citation in format AMSBIB
\Bibitem{Aic12}
\by Francesca~Aicardi
\paper Rational tangles and the modular group
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 2
\pages 219--236
\mathnet{http://mi.mathnet.ru/mmj463}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-2-219-236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978753}
\zmath{https://zbmath.org/?q=an:1258.57005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309365900001}
Linking options:
  • https://www.mathnet.ru/eng/mmj463
  • https://www.mathnet.ru/eng/mmj/v12/i2/p219
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :1
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024