Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2012, Volume 12, Number 3, Pages 605–620
DOI: https://doi.org/10.17323/1609-4514-2012-12-3-605-620
(Mi mmj460)
 

This article is cited in 21 scientific papers (total in 21 papers)

The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group

Bertram Kostant

Department of Mathematics, M.I.T., Cambridge, MA 02139
Full-text PDF Citations (21)
References:
Abstract: Let $G$ be a semisimple Lie group and let $\mathfrak{g}= \mathfrak{n}_- + \mathfrak{h} +\mathfrak{n}$ be a triangular decomposition of $\mathfrak{g}= \hbox{Lie}\,G$. Let $\mathfrak{b} = \mathfrak{h} +\mathfrak{n}$ and let $H,N,B$ be Lie subgroups of $G$ corresponding respectively to $\mathfrak{h}$, $\mathfrak{n}$ and $\mathfrak{b}$. We may identify $\mathfrak{n}_-$ with the dual space to $\mathfrak{n}$. The coadjoint action of $N$ on $\mathfrak{n}_-$ extends to an action of $B$ on $\mathfrak{n}_-$. There exists a unique nonempty Zariski open orbit $X$ of $B$ on $\mathfrak{n}_-$. Any $N$-orbit in $X$ is a maximal coadjoint orbit of $N$ in $\mathfrak{n}_-$. The cascade of orthogonal roots defines a cross-section $\mathfrak{r}_-^{\times}$ of the set of such orbits leading to a decomposition
$$X = N/R\times \mathfrak{r}_-^{\times}.$$
This decomposition, among other things, establishes the structure of $S(\mathfrak{n})^{\mathfrak{n}}$ as a polynomial ring generated by the prime polynomials of $H$-weight vectors in $S(\mathfrak{n})^{\mathfrak{n}}$. It also leads to the multiplicity 1 of $H$ weights in $S(\mathfrak{n})^{\mathfrak{n}}$.
Key words and phrases: Cascade of orthogonal roots, Borel subgroups, nilpotent coadjoint action.
Received: February 1, 2011
Bibliographic databases:
Document Type: Article
MSC: 20C, 14L24
Language: English
Citation: Bertram Kostant, “The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group”, Mosc. Math. J., 12:3 (2012), 605–620
Citation in format AMSBIB
\Bibitem{Kos12}
\by Bertram~Kostant
\paper The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 3
\pages 605--620
\mathnet{http://mi.mathnet.ru/mmj460}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-3-605-620}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024825}
\zmath{https://zbmath.org/?q=an:1260.14058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309366400008}
Linking options:
  • https://www.mathnet.ru/eng/mmj460
  • https://www.mathnet.ru/eng/mmj/v12/i3/p605
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:201
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024