Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 1, Pages 81–97
DOI: https://doi.org/10.17323/1609-4514-2002-2-1-81-97
(Mi mmj46)
 

This article is cited in 79 scientific papers (total in 79 papers)

MacWilliams duality and the Rosenbloom–Tsfasman metric

S. T. Doughertya, M. M. Skriganovb

a University of Scranton
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF Citations (79)
References:
Abstract: A new non-Hamming metric on linear spaces over finite fields has recently been introduced by Rosenbloom and Tsfasman [8]. We consider orbits of linear groups preserving the metric and show that weight enumerators suitably associated with such orbits satisfy MacWilliams-type identities for mutually dual codes. Furthermore, we show that the corresponding weight spectra of dual codes are related by transformations which involve multi-dimensional generalizations of known Krawtchouk polynomials. The relationships with recent results by Godsil [5] and Martin and Stinson [7] on MacWilliams-type theorems for association schemes and ordered orthogonal arrays are also briefly discussed in the paper.
Key words and phrases: Codes in the Rosenbloom–Tsfasman metric, MacWilliams relations, uniform distributions.
Received: March 5, 2001; in revised form November 15, 2001
Bibliographic databases:
MSC: 94B, 11K, 94A
Language: English
Citation: S. T. Dougherty, M. M. Skriganov, “MacWilliams duality and the Rosenbloom–Tsfasman metric”, Mosc. Math. J., 2:1 (2002), 81–97
Citation in format AMSBIB
\Bibitem{DouSkr02}
\by S.~T.~Dougherty, M.~M.~Skriganov
\paper MacWilliams duality and the Rosenbloom--Tsfasman metric
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 1
\pages 81--97
\mathnet{http://mi.mathnet.ru/mmj46}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-1-81-97}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900585}
\zmath{https://zbmath.org/?q=an:1024.94012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587700005}
Linking options:
  • https://www.mathnet.ru/eng/mmj46
  • https://www.mathnet.ru/eng/mmj/v2/i1/p81
  • This publication is cited in the following 79 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:867
    References:118
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024