Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2012, Volume 12, Number 1, Pages 173–192
DOI: https://doi.org/10.17323/1609-4514-2012-12-1-173-192
(Mi mmj452)
 

This article is cited in 14 scientific papers (total in 14 papers)

Extremal spectral properties of Lawson tau-surfaces and the Lamé equation

Alexei V. Penskoiabc

a Department of Geometry and Topology, Faculty of Mathematics and Mechanics, Moscow State University, Moscow, Russia
b Independent University of Moscow, Moscow, Russia
c Department of Mathematical Modelling (FN-12), Faculty of Fundamental Sciences, Bauman Moscow State Technical University, Moscow, Russia
Full-text PDF Citations (14)
References:
Abstract: Extremal spectral properties of Lawson tau-surfaces are investigated. The Lawson tau-surfaces form a two-parametric family of tori or Klein bottles minimally immersed in the standard unitary three-dimensional sphere. A Lawson tau-surface carries an extremal metric for some eigenvalue of the Laplace–Beltrami operator. Using theory of the Lamé equation we find explicitly these extremal eigenvalues.
Key words and phrases: Lawson minimal surfaces, extremal metric, Lamé equation, Magnus–Winkler–Ince equation.
Received: January 10, 2011; in revised form October 18, 2011
Bibliographic databases:
Document Type: Article
MSC: 58E11, 58J50
Language: English
Citation: Alexei V. Penskoi, “Extremal spectral properties of Lawson tau-surfaces and the Lamé equation”, Mosc. Math. J., 12:1 (2012), 173–192
Citation in format AMSBIB
\Bibitem{Pen12}
\by Alexei~V.~Penskoi
\paper Extremal spectral properties of Lawson tau-surfaces and the Lam\'e equation
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 1
\pages 173--192
\mathnet{http://mi.mathnet.ru/mmj452}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-1-173-192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2952430}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309364900009}
Linking options:
  • https://www.mathnet.ru/eng/mmj452
  • https://www.mathnet.ru/eng/mmj/v12/i1/p173
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:381
    References:109
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024