Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2012, Volume 12, Number 1, Pages 49–54 (Mi mmj447)  

This article is cited in 6 scientific papers (total in 6 papers)

Orbifold Euler characteristics for dual invertible polynomials

Wolfgang Ebelinga, Sabir M. Gusein-Zadeb

a Leibniz Universität Hannover, Institut für Algebraische Geometrie, Hannover, Germany
b Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF Citations (6)
References:
Abstract: To construct mirror symmetric Landau–Ginzburg models, P. Berglund, T. Hübsch and M. Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde f,\widetilde G)$. Here we study the reduced orbifold Euler characteristics of the Milnor fibres of $f$ and $\widetilde f$ with the actions of the groups $G$ and $\widetilde G$ respectively and show that they coincide up to a sign.
Key words and phrases: invertible polynomials, group actions, orbifold Euler characteristic.
Received: September 11, 2010
Bibliographic databases:
Document Type: Article
MSC: 14J33, 32S55, 57R18
Language: English
Citation: Wolfgang Ebeling, Sabir M. Gusein-Zade, “Orbifold Euler characteristics for dual invertible polynomials”, Mosc. Math. J., 12:1 (2012), 49–54
Citation in format AMSBIB
\Bibitem{EbeGus12}
\by Wolfgang~Ebeling, Sabir~M.~Gusein-Zade
\paper Orbifold Euler characteristics for dual invertible polynomials
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 1
\pages 49--54
\mathnet{http://mi.mathnet.ru/mmj447}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2952425}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309364900004}
Linking options:
  • https://www.mathnet.ru/eng/mmj447
  • https://www.mathnet.ru/eng/mmj/v12/i1/p49
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:613
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024