Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2011, Volume 11, Number 4, Pages 657–683
DOI: https://doi.org/10.17323/1609-4514-2011-11-4-657-683
(Mi mmj438)
 

This article is cited in 9 scientific papers (total in 9 papers)

Normal forms of hypersurface singularities in positive characteristic

Yousra Boubakri, Gert-Martin Greuel, Thomas Markwig

Universität Kaiserslautern, Fachbereich Mathematik, Kaiserslautern
Full-text PDF Citations (9)
References:
Abstract: The main purpose of this article is to lay the foundations for a classification of isolated hypersurface singularities in positive characteristic. Although our article is in the spirit of Arnol'd who classified real and complex hypersurfaces in the 1970's with respect to right equivalence, several new phenomena occur in positive characteristic. Already the notion of isolated singularity is different for right resp. contact equivalence over fields of characteristic other than zero. The heart of this paper consists of the study of different notions of non-degeneracy and the associated piecewise filtrations induced by the Newton diagram of a power series $f$. We introduce the conditions AC and AAC which modify and generalise the conditions A and AA of Arnol'd resp. Wall and which allow the classification with respect to contact equivalence in any characteristic. Using this we deduce normal forms and rather sharp determinacy bounds for $f$ with respect to right and contact equivalence. We apply this to classify hypersurface singularities of low modality in positive characteristic.
Key words and phrases: hypersurface singularities, finite determinacy, Milnor number, Tjurina number, normal forms, semi-quasihomogeneous, inner Newton non-degenerate.
Received: August 12, 2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yousra Boubakri, Gert-Martin Greuel, Thomas Markwig, “Normal forms of hypersurface singularities in positive characteristic”, Mosc. Math. J., 11:4 (2011), 657–683
Citation in format AMSBIB
\Bibitem{BouGreMar11}
\by Yousra~Boubakri, Gert-Martin~Greuel, Thomas~Markwig
\paper Normal forms of hypersurface singularities in positive characteristic
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 4
\pages 657--683
\mathnet{http://mi.mathnet.ru/mmj438}
\crossref{https://doi.org/10.17323/1609-4514-2011-11-4-657-683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918293}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300368300002}
Linking options:
  • https://www.mathnet.ru/eng/mmj438
  • https://www.mathnet.ru/eng/mmj/v11/i4/p657
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:470
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024