Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2011, Volume 11, Number 3, Pages 599–615 (Mi mmj435)  

This article is cited in 2 scientific papers (total in 2 papers)

Betti bounds of polynomials

Dirk Siersmaa, Mihai Tibărb

a Institute of Mathematics, Utrecht University, Utrecht, The Netherlands
b Mathématiques, UMR 8524 CNRS, Université Lille 1, Villeneuve d'Ascq, France
Full-text PDF Citations (2)
References:
Abstract: We initiate a classification of polynomials $f\colon\mathbb C^n\to\mathbb C$ of degree $d$ having the top Betti number of the general fibre close to the maximum. We find a range in which the polynomial must have isolated singularities and another range where it may have at most one line singularity of general Morse transversal type. Our method uses deformations into particular pencils with non-isolated singularities.
Key words and phrases: deformation of hypersurfaces and polynomials, Betti numbers, classification, general fibres, singularities at infinity, boundary singularities.
Received: September 7, 2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: Dirk Siersma, Mihai Tibăr, “Betti bounds of polynomials”, Mosc. Math. J., 11:3 (2011), 599–615
Citation in format AMSBIB
\Bibitem{SieTib11}
\by Dirk~Siersma, Mihai~Tib{\u a}r
\paper Betti bounds of polynomials
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 3
\pages 599--615
\mathnet{http://mi.mathnet.ru/mmj435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2894433}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300365900011}
Linking options:
  • https://www.mathnet.ru/eng/mmj435
  • https://www.mathnet.ru/eng/mmj/v11/i3/p599
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:183
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024