Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2011, Volume 11, Number 3, Pages 463–472 (Mi mmj427)  

This article is cited in 2 scientific papers (total in 2 papers)

Monodromy of dual invertible polynomials

W. Ebelinga, S. M. Gusein-Zadeb

a Leibniz Universität Hannover, Institut für Algebraische Geometrie, Hannover, Germany
b Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF Citations (2)
References:
Abstract: A generalization of Arnold's strange duality to invertible polynomials in three variables by the first author and A. Takahashi includes the following relation. For some invertible polynomials $f$ the Saito dual of the reduced monodromy zeta function of $f$ coincides with a formal “root” of the reduced monodromy zeta function of its Berglund–Hübsch transpose $f^T$. Here we give a geometric interpretation of “roots” of the monodromy zeta function and generalize the above relation to all non-degenerate invertible polynomials in three variables and to some polynomials in an arbitrary number of variables in a form including “roots” of the monodromy zeta functions both of $f$ and $f^T$.
Key words and phrases: invertible polynomials, monodromy, zeta functions, Saito duality.
Received: September 9, 2010
Bibliographic databases:
Document Type: Article
MSC: 32S05, 32S40, 14J33
Language: English
Citation: W. Ebeling, S. M. Gusein-Zade, “Monodromy of dual invertible polynomials”, Mosc. Math. J., 11:3 (2011), 463–472
Citation in format AMSBIB
\Bibitem{EbeGus11}
\by W.~Ebeling, S.~M.~Gusein-Zade
\paper Monodromy of dual invertible polynomials
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 3
\pages 463--472
\mathnet{http://mi.mathnet.ru/mmj427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2894425}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300365900003}
Linking options:
  • https://www.mathnet.ru/eng/mmj427
  • https://www.mathnet.ru/eng/mmj/v11/i3/p463
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:259
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024