Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2011, Volume 11, Number 2, Pages 205–229 (Mi mmj418)  

This article is cited in 3 scientific papers (total in 3 papers)

Toric Poisson structures

Arlo Caine

University of Notre Dame, Notre Dame, IN, USA
Full-text PDF Citations (3)
References:
Abstract: Let $T_\mathbb C$ be a complex algebraic torus and let $X(\Sigma)$ be a complete nonsingular toric variety for $T_\mathbb C$. In this paper, a real $T_\mathbb C$-invariant Poisson structure $\Pi_\Sigma$ is constructed on the complex manifold $X(\Sigma)$, the symplectic leaves of which are the $T_\mathbb C$-orbits in $X(\Sigma)$. It is shown that each leaf admits an effective Hamiltonian action by a subtorus of the compact torus $T\subset T_\mathbb C$. However, the global action of $T_\mathbb C$ on $(X(\Sigma),\Pi_\Sigma)$ is Poisson but not Hamiltonian. The main result of the paper is a lower bound for the first Poisson cohomology of these structures. For the simplest case, $X(\Sigma)=\mathbb C\mathrm P^1$, the Poisson cohomology is computed using a Mayer–Vietoris argument and known results on planar quadratic Poisson structures. In this example, the bound is optimal. The paper concludes by studying the interaction of $\Pi_\Sigma$ with the symplectic structure on $\mathbb C\mathrm P^n$, where the modular vector field with respect to a particular Delzant Liouville form admits a curious formula in terms of Delzant moment data. This formula enables one to compute the zero locus of this modular vector field and relate it to the Euclidean geometry of the moment simplex.
Key words and phrases: Poisson cohomology, modular class, momentum map, toric variety.
Received: October 8, 2009; in revised form August 29, 2010
Bibliographic databases:
Document Type: Article
MSC: 53D17, 14M25, 37J15
Language: English
Citation: Arlo Caine, “Toric Poisson structures”, Mosc. Math. J., 11:2 (2011), 205–229
Citation in format AMSBIB
\Bibitem{Cai11}
\by Arlo~Caine
\paper Toric Poisson structures
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 2
\pages 205--229
\mathnet{http://mi.mathnet.ru/mmj418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2859234}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288967100002}
Linking options:
  • https://www.mathnet.ru/eng/mmj418
  • https://www.mathnet.ru/eng/mmj/v11/i2/p205
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:209
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024