Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2011, Volume 11, Number 1, Pages 139–147
DOI: https://doi.org/10.17323/1609-4514-2011-11-1-139-147
(Mi mmj414)
 

This article is cited in 11 scientific papers (total in 11 papers)

On rigid Hirzebruch genera

Oleg R. Musin

Department of Mathematics, University of Texas at Brownsville, Brownsville, TX
Full-text PDF Citations (11)
References:
Abstract: The classical multiplicative (Hirzebruch) genera of manifolds have the wonderful property which is called rigidity. Rigidity of a genus $h$ means that if a compact connected Lie group $G$ acts on a manifold $X$, then the equivariant genus $h^G(X)$ is independent on $G$, i.e., $h^G(X)=h(X)$.
In this paper we are considering the rigidity problem for stably complex manifolds. In particular, we are proving that a genus is rigid if and only if it is a generalized Todd genus.
Key words and phrases: Hirzebruch genus, rigid genus, complex bordism.
Received: February 11, 2009; in revised form July 10, 2010
Bibliographic databases:
Document Type: Article
MSC: 55N22, 57R77
Language: English
Citation: Oleg R. Musin, “On rigid Hirzebruch genera”, Mosc. Math. J., 11:1 (2011), 139–147
Citation in format AMSBIB
\Bibitem{Mus11}
\by Oleg~R.~Musin
\paper On rigid Hirzebruch genera
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 1
\pages 139--147
\mathnet{http://mi.mathnet.ru/mmj414}
\crossref{https://doi.org/10.17323/1609-4514-2011-11-1-139-147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2808215}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286528100006}
Linking options:
  • https://www.mathnet.ru/eng/mmj414
  • https://www.mathnet.ru/eng/mmj/v11/i1/p139
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :5
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024