Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2011, Volume 11, Number 1, Pages 73–111
DOI: https://doi.org/10.17323/1609-4514-2011-11-1-73-111
(Mi mmj411)
 

This article is cited in 16 scientific papers (total in 16 papers)

On $\log L$ and $L'/L$ for $L$-functions and the associated "$M$-functions": Connections in optimal cases

Yasutaka Iharaa, Kohji Matsumotob

a RIMS, Kyoto University, Kyoto, Japan
b Graduate School of Mathematics, Nagoya University, Nagoya, Japan
Full-text PDF Citations (16)
References:
Abstract: Let $\mathcal L(s,\chi)$ be either $\log L(s,\chi)$ or $L'/L(s,\chi)$, associated with an (abelian) $L$-function $L(s,\chi)$ of a global field $K$. For any quasi-character $\psi\colon\mathbb C\to\mathbb C^\times$ of the additive group of complex numbers, consider the average "$\mathrm{Avg}_{\mathfrak f_\chi=\mathfrak f}$" of $\psi(\mathcal L(s,\chi))$ over all Dirichlet characters $\chi$ on $K$ with a given prime conductor $\mathfrak f$. This paper contains (i) study of the limit as $N(\mathfrak f)\to\infty$ of this average, (ii) basic studies of the analytic function $\tilde M_s(z_1,z_2)$ in 3 complex variables arising from (i) (here, $(z_1,z_2)\in\mathbb C^2$ is the natural parameter for $\psi$), and (iii) application to value-distribution theory for $\{\mathcal L(s,\chi)\}_\chi$. Our base field $K$ is either a function field over a finite field, or a special type of number field: the rational number field $\mathbb Q$ or an imaginary quadratic field. But in the number field case, the Generalized Riemann Hypothesis is assumed in (i) and (iii).
Key words and phrases: $L$-function, value distribution, mean value theorem, arithmetic Dirichlet series, function field over finite field.
Received: October 20, 2009
Bibliographic databases:
Document Type: Article
MSC: Primary 11R42; Secondary 11M38, 11M41
Language: English
Citation: Yasutaka Ihara, Kohji Matsumoto, “On $\log L$ and $L'/L$ for $L$-functions and the associated "$M$-functions": Connections in optimal cases”, Mosc. Math. J., 11:1 (2011), 73–111
Citation in format AMSBIB
\Bibitem{IhaMat11}
\by Yasutaka~Ihara, Kohji~Matsumoto
\paper On $\log L$ and $L'/L$ for $L$-functions and the associated ``$M$-functions'': Connections in~optimal~cases
\jour Mosc. Math.~J.
\yr 2011
\vol 11
\issue 1
\pages 73--111
\mathnet{http://mi.mathnet.ru/mmj411}
\crossref{https://doi.org/10.17323/1609-4514-2011-11-1-73-111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2808212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286528100003}
Linking options:
  • https://www.mathnet.ru/eng/mmj411
  • https://www.mathnet.ru/eng/mmj/v11/i1/p73
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024