Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2010, Volume 10, Number 4, Pages 811–829
DOI: https://doi.org/10.17323/1609-4514-2010-10-4-811-829
(Mi mmj406)
 

This article is cited in 2 scientific papers (total in 2 papers)

Variational principle for fuzzy Gibbs measures

Evgeny Verbitskiyab

a Mathematical Institute, University of Leiden, Leiden, The Netherlands
b Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
Full-text PDF Citations (2)
References:
Abstract: In this paper we study a large class of renormalization transformations of measures on lattices. An image of a Gibbs measure under such transformation is called a fuzzy Gibbs measure. Transformations of this type and fuzzy Gibbs measures appear naturally in many fields. Examples include the hidden Markov processes (HMP), memoryless channels in information theory, continuous block factors of symbolic dynamical systems, and many renormalization transformations of statistical mechanics. The main result is the generalization of the classical variational principle of Dobrushin–Lanford–Ruelle for Gibbs measures to the class of fuzzy Gibbs measures.
Key words and phrases: non-Gibbsian measures, renormalization, deterministic and random transformations, variational principle.
Received: May 20, 2010
Bibliographic databases:
Document Type: Article
MSC: Primary 82B20; Secondary 82B28, 37B10, 37A60
Language: English
Citation: Evgeny Verbitskiy, “Variational principle for fuzzy Gibbs measures”, Mosc. Math. J., 10:4 (2010), 811–829
Citation in format AMSBIB
\Bibitem{Ver10}
\by Evgeny~Verbitskiy
\paper Variational principle for fuzzy Gibbs measures
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 4
\pages 811--829
\mathnet{http://mi.mathnet.ru/mmj406}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-4-811-829}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2791060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284154300009}
Linking options:
  • https://www.mathnet.ru/eng/mmj406
  • https://www.mathnet.ru/eng/mmj/v10/i4/p811
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:233
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024