Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2010, Volume 10, Number 4, Pages 687–711
DOI: https://doi.org/10.17323/1609-4514-2010-10-4-687-711
(Mi mmj399)
 

This article is cited in 28 scientific papers (total in 28 papers)

A large-deviation view on dynamical Gibbs–non-Gibbs transitions

A. C. D. van Entera, R. Fernándezb, F. den Hollanderc, F. Redigd

a Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
b Department of Mathematics, Utrecht University, Utrecht, The Netherlands
c Mathematical Institute, Leiden University, Leiden, The Netherlands
d IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
Full-text PDF Citations (28)
References:
Abstract: We develop a space-time large-deviation point of view on Gibbs–non-Gibbs transitions in spin systems subject to a stochastic spin-flip dynamics. Using the general theory for large deviations of functionals of Markov processes outlined in a recent book by Feng and Kurtz, we show that the trajectory under the spin-flip dynamics of the empirical measure of the spins in a large block in $\mathbb Z^d$ satisfies a large deviation principle in the limit as the block size tends to infinity. The associated rate function can be computed as the action functional of a Lagrangian that is the Legendre transform of a certain non-linear generator, playing a role analogous to the moment-generating function in the Gärtner–Ellis theorem of large deviation theory when this is applied to finite-dimensional Markov processes. This rate function is used to define the notion of “bad empirical measures”, which are the discontinuity points of the optimal trajectories (i.e., the trajectories minimizing the rate function) given the empirical measure at the end of the trajectory. The dynamical Gibbs–non-Gibbs transitions are linked to the occurrence of bad empirical measures: for short times no bad empirical measures occur, while for intermediate and large times bad empirical measures are possible. A future research program is proposed to classify the various possible scenarios behind this crossover, which we refer to as a “nature-versus-nurture” transition.
Key words and phrases: stochastic spin-flip dynamics, Gibbs–non-Gibbs transition, empirical measure, non-linear generator, Nisio control semigroup, large deviation principle, bad configurations, bad empirical measures, nature versus nurture.
Received: May 1, 2010; in revised form July 5, 2010
Bibliographic databases:
Document Type: Article
MSC: Primary 60F10, 60G60, 60K35; Secondary 82B26, 82C22
Language: English
Citation: A. C. D. van Enter, R. Fernández, F. den Hollander, F. Redig, “A large-deviation view on dynamical Gibbs–non-Gibbs transitions”, Mosc. Math. J., 10:4 (2010), 687–711
Citation in format AMSBIB
\Bibitem{VanFerDen10}
\by A.~C.~D.~van~Enter, R.~Fern\'andez, F.~den Hollander, F.~Redig
\paper A large-deviation view on dynamical Gibbs--non-Gibbs transitions
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 4
\pages 687--711
\mathnet{http://mi.mathnet.ru/mmj399}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-4-687-711}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2791053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284154300002}
Linking options:
  • https://www.mathnet.ru/eng/mmj399
  • https://www.mathnet.ru/eng/mmj/v10/i4/p687
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:380
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024