Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2010, Volume 10, Number 3, Pages 547–591
DOI: https://doi.org/10.17323/1609-4514-2010-10-3-547-591
(Mi mmj392)
 

This article is cited in 1 scientific paper (total in 1 paper)

On density of horospheres in dynamical laminations

A. Glutsyukab

a Poncelet Laboratory (UMI of CNRS and Independent University of Moscow), Moscow, Russia
b CNRS, Unité de Mathématiques Pures et Appliquées, M.R., École Normale Supérieure de Lyon, Lyon, France
Full-text PDF Citations (1)
References:
Abstract: Sullivan's dictionary relates two domains of complex dynamics: Kleinian groups and rational iterations on the Riemann sphere. In 1997 M. Lyubich and Y. Minsky have extended the Sullivan's dictionary by constructing an analogue of the hyperbolic manifold of a Kleinian group: the so-called quotient hyperbolic lamination associated to a rational function. This is an abstract topological space constructed from the space of backward orbits of the rational function that carries a “foliation” (more precisely, lamination) by hyperbolic 3-manifolds (that may be singular). The hyperbolic leaves are dense, may be after deleting at most finite number of isolated leaves. Each hyperbolic leaf is foliated by horospheres, which form the unstable foliation (horospheric lamination) for the leafwise vertical geodesic flow. We consider the total laminated space with isolated hyperbolic leaves deleted. We prove that the horospheric lamination is topologically transitive (and there are a lot of dense horospheres), if and only if the corresponding rational function does not belong to the following list of exceptions: powers, Chebyshev polynomials, Lattès examples. We show that the horospheric lamination is minimal, if the corresponding function does not belong to the same list of exceptions and is critically nonrecurrent without parabolics.
Key words and phrases: rational function, natural extension, repelling periodic orbit, affine lamination, hyperbolic lamination, horosphere, minimality.
Received: November 9, 2009; in revised form April 21, 2010
Bibliographic databases:
Document Type: Article
MSC: 58F23, 57M50
Language: English
Citation: A. Glutsyuk, “On density of horospheres in dynamical laminations”, Mosc. Math. J., 10:3 (2010), 547–591
Citation in format AMSBIB
\Bibitem{Glu10}
\by A.~Glutsyuk
\paper On density of horospheres in dynamical laminations
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 3
\pages 547--591
\mathnet{http://mi.mathnet.ru/mmj392}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-3-547-591}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2732573}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281878900004}
Linking options:
  • https://www.mathnet.ru/eng/mmj392
  • https://www.mathnet.ru/eng/mmj/v10/i3/p547
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:199
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024