Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2010, Volume 10, Number 2, Pages 377–397
DOI: https://doi.org/10.17323/1609-4514-2010-10-2-377-397
(Mi mmj385)
 

On the continuous cohomology of diffeomorphism groups

M. V. Losik

Saratov State University, Saratov, Russia
References:
Abstract: Suppose that $M$ is a connected orientable $n$-dimensional manifold and $m>2n$. If $H^i(M,\mathbb R)=0$ for $i>0$, it is proved that for each $m$ there is a monomorphism $H^m(W_n,O(n))\to H^m_\mathrm{cont}(\operatorname{Diff}M,\mathbb R)$. If $M$ is closed and oriented, it is proved that for each $m$ there is a monomorphism $H^m(W_n,O(n))\to H^{m-n}_\mathrm{cont}(\operatorname{Diff}_+M,\mathbb R)$, where $\operatorname{Diff}_+M$ is the group of orientation preserving diffeomorphisms of $M$.
Key words and phrases: diffeomorphism group, group cohomology, diagonal cohomology.
Received: May 25, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. V. Losik, “On the continuous cohomology of diffeomorphism groups”, Mosc. Math. J., 10:2 (2010), 377–397
Citation in format AMSBIB
\Bibitem{Los10}
\by M.~V.~Losik
\paper On the continuous cohomology of diffeomorphism groups
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 2
\pages 377--397
\mathnet{http://mi.mathnet.ru/mmj385}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-2-377-397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2722803}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279342400006}
Linking options:
  • https://www.mathnet.ru/eng/mmj385
  • https://www.mathnet.ru/eng/mmj/v10/i2/p377
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:243
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024