Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2010, Volume 10, Number 2, Pages 343–375
DOI: https://doi.org/10.17323/1609-4514-2010-10-2-343-375
(Mi mmj384)
 

This article is cited in 18 scientific papers (total in 18 papers)

Mixed volume and an extension of intersection theory of divisors

Kiumars Kaveha, A. G. Khovanskiibca

a Department of Mathematics, University of Toronto, Toronto, Canada
b Institute for Systems Analysis, Russian Academy of Sciences
c Moscow Independent Univarsity
Full-text PDF Citations (18)
References:
Abstract: Let $\mathbf K_\mathrm{rat}(X)$ be the collection of all non-zero finite dimensional subspaces of rational functions on an $n$-dimensional irreducible variety $X$. For any $n$-tuple $L_1,\dots,L_n\in\mathbf K_\mathrm{rat}(X)$, we define an intersection index $[L_1,\dots,L_n]$ as the number of solutions in $X$ of a system of equations $f_1=\dots=f_n=0$ where each $f_i$ is a generic function from the space $L_i$. In counting the solutions, we neglect the solutions $x$ at which all the functions in some space $L_i$ vanish as well as the solutions at which at least one function from some subspace $L_i$ has a pole. The collection $\mathbf K_\mathrm{rat}(X)$ is a commutative semigroup with respect to a natural multiplication. The intersection index $[L_1,\dots,L_n]$ can be extended to the Grothendieck group of $\mathbf K_\mathrm{rat}(X)$. This gives an extension of the intersection theory of divisors. The extended theory is applicable even to non-complete varieties. We show that this intersection index enjoys all the main properties of the mixed volume of convex bodies. Our paper is inspired by the Bernstein–Kushnirenko theorem from the Newton polytope theory.
Key words and phrases: system of algebraic equations, mixed volume of convex bodies, Bernstein–Kushirenko theorem, linear system on a variety, Cartier divisor, intersection index.
Received: August 10, 2009
Bibliographic databases:
Document Type: Article
MSC: 14C20, 52A39
Language: English
Citation: Kiumars Kaveh, A. G. Khovanskii, “Mixed volume and an extension of intersection theory of divisors”, Mosc. Math. J., 10:2 (2010), 343–375
Citation in format AMSBIB
\Bibitem{KavKho10}
\by Kiumars~Kaveh, A.~G.~Khovanskii
\paper Mixed volume and an extension of intersection theory of divisors
\jour Mosc. Math.~J.
\yr 2010
\vol 10
\issue 2
\pages 343--375
\mathnet{http://mi.mathnet.ru/mmj384}
\crossref{https://doi.org/10.17323/1609-4514-2010-10-2-343-375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2722802}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279342400005}
Linking options:
  • https://www.mathnet.ru/eng/mmj384
  • https://www.mathnet.ru/eng/mmj/v10/i2/p343
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024