Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2001, Volume 1, Number 4, Pages 569–582
DOI: https://doi.org/10.17323/1609-4514-2001-1-4-569-582
(Mi mmj37)
 

This article is cited in 23 scientific papers (total in 23 papers)

Arithmetic coding and entropy for the positive geodesic flow on the modular surface

B. M. Gurevicha, S. R. Katokb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Department of Mathematics, Pennsylvania State University
Full-text PDF Citations (23)
References:
Abstract: In this article we study geodesics on the modular surface by means of their arithmetic codes. Closed geodesics for which arithmetic and geometric codes coincide were identified in [9]. Here they are described as periodic orbits of a special flow over a topological Markov chain with countable alphabet, which we call the positive geodesic flow. We obtain an explicit formula for the ceiling function and two-sided estimates for the topological entropy of the positive geodesic flow, which turns out to be separated from one: the topological entropy of the geodesic flow on the modular surface.
Key words and phrases: Geodesic flow, modular surface, Fuchsian group, entropy, topological entropy.
Received: July 1, 2001; in revised form September 26, 2001
Bibliographic databases:
MSC: 37D40, 37B40, 20H05
Language: English
Citation: B. M. Gurevich, S. R. Katok, “Arithmetic coding and entropy for the positive geodesic flow on the modular surface”, Mosc. Math. J., 1:4 (2001), 569–582
Citation in format AMSBIB
\Bibitem{GurKat01}
\by B.~M.~Gurevich, S.~R.~Katok
\paper Arithmetic coding and entropy for the positive geodesic flow on the modular surface
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 4
\pages 569--582
\mathnet{http://mi.mathnet.ru/mmj37}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-4-569-582}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1901076}
\zmath{https://zbmath.org/?q=an:1075.37007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587600006}
\elib{https://elibrary.ru/item.asp?id=8379088}
Linking options:
  • https://www.mathnet.ru/eng/mmj37
  • https://www.mathnet.ru/eng/mmj/v1/i4/p569
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:358
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024