Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 4, Pages 867–883
DOI: https://doi.org/10.17323/1609-4514-2009-9-4-867-883
(Mi mmj368)
 

This article is cited in 2 scientific papers (total in 2 papers)

Properties of weight posets for weight multiplicity free representations

Dmitri I. Panyushevab

a Independent University of Moscow, Moscow, Russia
b Institute for Information Transmission Problems, Moscow, Russia
Full-text PDF Citations (2)
References:
Abstract: We study weight posets of weight multiplicity free (WMF) representations of reductive Lie algebras. Specifically, we are interested in relations between $\dim\mathcal R$ and the number of edges in the Hasse diagram of the corresponding weight poset $\#\mathcal E(\mathcal R)$. We compute the number of edges and upper covering polynomials for the weight posets of all WMF-representations. We also point out non-trivial isomorphisms between weight posets of different irreducible WMF-representations.
Our main results concern WMF-representations associated with periodic gradings or $\mathbb Z$-gradings of simple Lie algebras. For $\mathbb Z$-gradings, we prove that $0<2\dim\mathcal R-\#\mathcal E(\mathcal R)<h$, where $h$ is the Coxeter number of $\mathfrak g$. For periodic gradings, we prove that $0\le2\dim\mathcal R-\#\mathcal E(\mathcal R)$.
Key words and phrases: Hasse diagram, weight poset, root order, grading of a Lie algebra.
Received: November 23, 2008
Bibliographic databases:
Document Type: Article
MSC: Primary 05E15; Secondary 06A07, 17B20
Language: English
Citation: Dmitri I. Panyushev, “Properties of weight posets for weight multiplicity free representations”, Mosc. Math. J., 9:4 (2009), 867–883
Citation in format AMSBIB
\Bibitem{Pan09}
\by Dmitri~I.~Panyushev
\paper Properties of weight posets for weight multiplicity free representations
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 4
\pages 867--883
\mathnet{http://mi.mathnet.ru/mmj368}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-4-867-883}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2663994}
\zmath{https://zbmath.org/?q=an:05692630}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273089600007}
Linking options:
  • https://www.mathnet.ru/eng/mmj368
  • https://www.mathnet.ru/eng/mmj/v9/i4/p867
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :1
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024