Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 4, Pages 855–866
DOI: https://doi.org/10.17323/1609-4514-2009-9-4-855-866
(Mi mmj367)
 

Projective limit cycles

Hossein Movasati, Evilson Vieira

Instituto de Matemática Pura e Aplicada, IMPA, Rio de Janeiro, Brazil
References:
Abstract: In this article we study projective cycles in $\mathbb P^2_\mathbb R$. Our inspiring example is the Jouanolou foliation of odd degree which has a hyperbolic projective limit cycle. We prove that only odd degree foliations may have projective cycles and that foliations with exactly one real simple singularity have a projective cycle. We also prove that after a perturbation of a generic Hamiltonian foliation with a projective cycle, we have a projective limit cycle if and only if the perturbation is not Hamiltonian.
Key words and phrases: holomorphic foliations, holonomy, vanishing cycle.
Received: June 16, 2008
Bibliographic databases:
Document Type: Article
MSC: 34C07
Language: English
Citation: Hossein Movasati, Evilson Vieira, “Projective limit cycles”, Mosc. Math. J., 9:4 (2009), 855–866
Citation in format AMSBIB
\Bibitem{MovVie09}
\by Hossein~Movasati, Evilson~Vieira
\paper Projective limit cycles
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 4
\pages 855--866
\mathnet{http://mi.mathnet.ru/mmj367}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-4-855-866}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2663993}
\zmath{https://zbmath.org/?q=an:1187.37071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273089600006}
Linking options:
  • https://www.mathnet.ru/eng/mmj367
  • https://www.mathnet.ru/eng/mmj/v9/i4/p855
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:209
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024