Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 4, Pages 823–854
DOI: https://doi.org/10.17323/1609-4514-2009-9-4-823-854
(Mi mmj366)
 

Paths and Kostka–Macdonald polynomials

Anatol N. Kirillova, Reiho Sakamotob

a Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
b Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
References:
Abstract: We give several equivalent combinatorial descriptions of the space of states for the box-ball systems, and connect certain partition functions for these models with the $q$-weight multiplicities of the tensor product of the fundamental representations of the Lie algebra $\mathfrak{gl}(n)$. As an application, we give an elementary proof of the special case $t=1$ of the Haglund–Haiman–Loehr formula. Also, we propose a new class of combinatorial statistics that naturally generalize the so-called energy statistics.
Key words and phrases: crystals, paths, energy and tau functions, box-ball systems, Kostka–Macdonald polynomials.
Received: November 14, 2008
Bibliographic databases:
Document Type: Article
MSC: 05E10, 20C35
Language: English
Citation: Anatol N. Kirillov, Reiho Sakamoto, “Paths and Kostka–Macdonald polynomials”, Mosc. Math. J., 9:4 (2009), 823–854
Citation in format AMSBIB
\Bibitem{KirSak09}
\by Anatol~N.~Kirillov, Reiho~Sakamoto
\paper Paths and Kostka--Macdonald polynomials
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 4
\pages 823--854
\mathnet{http://mi.mathnet.ru/mmj366}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-4-823-854}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2663992}
\zmath{https://zbmath.org/?q=an:05692628}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273089600005}
Linking options:
  • https://www.mathnet.ru/eng/mmj366
  • https://www.mathnet.ru/eng/mmj/v9/i4/p823
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:196
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024