Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 4, Pages 775–800
DOI: https://doi.org/10.17323/1609-4514-2009-9-4-775-800
(Mi mmj364)
 

This article is cited in 4 scientific papers (total in 4 papers)

Analogue of Newton–Puiseux series for non-holonomic $D$-modules and factoring

Dima Grigoriev

CNRS, Mathématiques, Université de Lille, Villeneuve d'Ascq, France
Full-text PDF Citations (4)
References:
Abstract: We introduce a concept of a fractional derivatives series and prove that any linear partial differential equation in two independent variables has a fractional derivatives series solution with coefficients from a differentially closed field of zero characteristic. The obtained results are extended from a single equation to $D$-modules having infinite-dimensional space of solutions (i.e., non-holonomic $D$-modules). As applications we design algorithms for treating first-order factors of a linear partial differential operator, in particular for finding all (right or left) first-order factors.
Key words and phrases: Newton–Puiseux series for $D$-modules, fractional derivatives, factoring linear partial differential operators.
Received: January 7, 2007; in revised form November 11, 2008
Bibliographic databases:
Document Type: Article
MSC: 35C10, 35D05, 68W30
Language: English
Citation: Dima Grigoriev, “Analogue of Newton–Puiseux series for non-holonomic $D$-modules and factoring”, Mosc. Math. J., 9:4 (2009), 775–800
Citation in format AMSBIB
\Bibitem{Gri09}
\by Dima~Grigoriev
\paper Analogue of Newton--Puiseux series for non-holonomic $D$-modules and factoring
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 4
\pages 775--800
\mathnet{http://mi.mathnet.ru/mmj364}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-4-775-800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2663990}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273089600003}
Linking options:
  • https://www.mathnet.ru/eng/mmj364
  • https://www.mathnet.ru/eng/mmj/v9/i4/p775
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:291
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024